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Abstract
The committor function presented is the central object of transition path theory.1 Defined as the probability of reaching the state 𝐵 before the state 𝐴 starting from the configuration given in argument, it can be
seen as an ideal reaction coordinate in many contexts. As solving the Backward Kolmogorov equation for which the committor is the solution is out of reach for classical methods such as finite elements method,
multiple approaches have been proposed in the literature to build approximate committor functions.2,3,4,5,6,7,8,9 Due to the high dimensionality of the arguments of this function, using neural networks to parameterise
it is motivated by success of such models to learn high dimensional functions. In this work we propose an alternative minimization problem suited to an iterative approach using the AMS algorithm. An illustration of
such an iterative procedure is presented.

1. The committor function

Figure 1: Illustration of definition of meta-
stable states.

We consider the overdamped Langevin

dynamics:

𝑑q𝑡 = −∇𝑉 (q𝑡)𝑑𝑡 + √2
𝛽

𝑑W𝑡

with infinitesimal generator:

ℒ = −∇𝑉 ⋅ ∇ + 1
𝛽

Δ

𝑝𝐴→𝐵(q) = ℙ (q𝜏𝐴∪𝐵
∈ 𝐵∣q0 = q)

𝜏𝑋 = inf {𝑡 ∈ (0; +∞) ∣ q𝑡 ∈ 𝑋}

The committor function verifies the Backward Kolmogorov equation:

∀q ∈ Ω\(𝐴 ∪ 𝐵), ℒ𝑝𝐴→𝐵(q) = 0,
∀q ∈ 𝐴, 𝑝𝐴→𝐵(q) = 0, ∀q ∈ 𝐵, 𝑝𝐴→𝐵(q) = 1,

(1)

with 𝐴 = 𝐴 ∪ 𝜕𝐴 and 𝐵 = 𝐴 ∪ 𝜕𝐵

2. Methods to approximate committor using neural networks
1st method, point-wise approximation
• Multiple MD runs starting from various positions q
• Define bins using a set of collective variables and use ”infinitely” long unbiased MD trajectory7 or

multiple weighted trajectories4

→ Drawback: CVs parameterizing the committor should be known
2nd method, variational formulation2,3,6

arginf
𝑓

{∫
Ω\(𝐴∪𝐵)

|∇𝑓(q)|2 e−𝛽𝑉 (q)𝑑q, ∣𝑓(q) = 0, q ∈ 𝐴, 𝑓(q) = 1, q ∈ 𝐵.} (2)

→ Drawback: a sampling of the Boltzmann–Gibbs measure is required.
3rd method: fixed point with multiple evaluations9

arginf
𝑓

{∫
Ω\(𝐴∪𝐵)

((𝐼 − 𝒫𝑖) 𝑓(q) − (𝒫𝑏𝟙𝐵) (q))2 𝜇(𝑑q)} . (3)

where 𝜇 can be any measure defined on Ω\(𝐴 ∪ 𝐵) and 𝒫 is the propagator:

(𝒫𝑝𝐴→𝐵) (q0) =𝔼q0 [𝑝𝐴→𝐵 (q𝑡∧𝜏𝐴∪𝐵
)]

=𝔼q0 [𝑝𝐴→𝐵 (q𝑡) 𝟙𝑡<𝜏𝐴∪𝐵
] + 𝔼q0 [𝟙𝐵 (q𝜏𝐴∪𝐵

) 𝟙𝑡⩾𝜏𝐴∪𝐵
]

= (𝒫𝑖𝑝𝐴→𝐵) (q0) + (𝒫𝑏𝟙𝐵) (q0)

The committor verifies:

∀q ∈ Ω\(𝐴 ∪ 𝐵), (𝐼 − 𝒫𝑖) 𝑝𝐴→𝐵(q) − (𝒫𝑏𝟙𝐵) (q) = 0.

→ Drawback: Multiple runs have to be started from the same point.
4th method: fixed point with an ergodic trajectory5,8

arginf
𝑓

{1
2

∫
Ω\(𝐴∪𝐵)

𝑓(q) (𝐼 − 𝒫𝑖) 𝑓(q)e−𝛽𝑉 (q)𝑑q

− ∫
Ω\(𝐴∪𝐵)

𝑓(q)𝒫𝑏𝟙𝐵(q)e−𝛽𝑉 (q)𝑑q}
(4)

→ Drawback: an ergodic trajectory sampling the Boltzmann–Gibbs measure is required.

3. Proposed minimization problem
Itō formula leads to:

𝑑𝑝𝐴→𝐵(q𝑡) = ℒ𝑝𝐴→𝐵(q𝑡)𝑑𝑡 + √2
𝛽

∇𝑝𝐴→𝐵(q𝑡) ⋅ 𝑑W𝑡.

Then, ∀q0 ∈ Ω\(𝐴 ∪ 𝐵):

𝑝𝐴→𝐵(q𝑡)𝟙𝑡<𝜏𝐴∪𝐵
+ 𝟙𝐵(q𝜏𝐴∪𝐵

)𝟙𝑡⩾𝜏𝐴∪𝐵
− 𝑝𝐴→𝐵(q0) = ∫

𝑡∧𝜏𝐴∪𝐵

0
√2

𝛽
∇𝑝𝐴→𝐵(q𝑠) ⋅ 𝑑W𝑠

Alternative approach:

arginf
𝑓

∫
Ω\(𝐴∪𝐵)

𝔼[(𝑓(q𝑡)𝟙𝑡<𝜏𝐴∪𝐵
+ 𝟙𝐵(q𝜏𝐴∪𝐵

)𝟙𝑡⩾𝜏𝐴∪𝐵
− 𝑓(q0)

− ∫
𝑡∧𝜏𝐴∪𝐵

0
√2

𝛽
∇𝑓(q𝑠) ⋅ 𝑑W𝑠)

2

]𝜇(𝑑q0).
(5)

Using the Euler-Maruyama integration scheme:

q𝑛+1 = q𝑛 − ∇𝑉 (q𝑛)Δ𝑡 + √2Δ𝑡
𝛽

G𝑛+1,

we run 𝐾 trajectories of length 𝑁. Then the discretized loss writes:

ℒ𝜃 = 1
𝐾

𝐾
∑
𝑘=1

⎛⎜⎜
⎝

𝑓𝜃(q𝑘
𝑁∧⌊

𝜏𝐴∪𝐵
Δ𝑡 ⌋+1

) − 𝑓𝜃(q𝑘
0) −

𝑁∧⌊
𝜏𝐴∪𝐵

Δ𝑡 ⌋+1

∑
𝑛=1

√2Δ𝑡
𝛽

∇𝑓𝜃(q𝑘
𝑛) ⋅ G𝑘

𝑛
⎞⎟⎟
⎠

2

,

where 𝑓𝜃 is the neural network parameterizing the committor:
𝑓𝜃(q) = (1 − 𝟙𝐴(q)) [(1 − 𝟙𝐵(q)) 𝑝𝜃(q) + 𝟙𝐵(q)] .

4. Illustration of the approach combined with AMS

Figure 2: Train dataset after intitial conditions
sampling

Using a feedforward model made of 3 hidden lay-
ers of 20 neurons with tanh activation function.
Optimizer: Adam, learning rate 0.001
1. Define: 𝐴, Σ𝐴, 𝐵 and Σ𝐵 as discs centered

on minima.
2. Run short MD starting from minima to gather

initial conditions for AMS (𝑁rep = 20).
3. Minimize the loss ℒ𝜃 with trajectories of

length 𝑁 = 1

Figure 3: First committor approximation, after
initial conditions sampling

4. Run AMS forward (𝐴 → 𝐵) and backward
(𝐵 → 𝐴) and gather all the sub-trajectories
of length 𝑁 = 1

5. Re-train the model.

Figure 4: Train dataset after first AMS

Figure 5: Second committor approximation, af-
ter initial conditions sampling and first AMS

6. Gather new initial conditions.
7. Run AMS again (𝑁rep = 50).
8. Add the new trajectories (possibly increase the

time lagg)
Repeat the step 6 to 9 until the approximate committor function no longer changes.
Table 1: 95% confidence interval of the transition probability obtained after 100 forward and backward
AMS runs using various reaction coordinates.

RC 𝜉(𝑥, 𝑦) = 𝑥 NN committor FE committor
Forward
𝑝 ± 1.96 𝜎𝑝 (1.10 ± 2.72) × 10−3 (4.66 ± 2.76) × 10−3 (3.78 ± 3.11) × 10−3

Backward
𝑝 ± 1.96 𝜎𝑝 (1.38 ± 2.82) × 10−3 (4.30 ± 2.25) × 10−3 (3.76 ± 3.13) × 10−3

Conclusion
An alternative approach to train neural networks to approximate the committor function is proposed.
This method allows to obtain an approximation leading to more accurate probability estimation using
the AMS algorithm.
Nonetheless this approach needs to be studied in more details to better understand why the obtained
results differ depending on the choice of the measure 𝜇 in equation (5).
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