Exploring machine learned reaction coordinates in conjunction with rare events sampling methods in ab-initio molecular dynamics for catalytic reactions

T. Pigeon ${ }^{1,2}$, M. Corral-Valero ${ }^{2}$, A. Anciaux-Sedrakian ${ }^{3}$, G. Stoltz ${ }^{1}$, P. Raybaud ${ }^{2}$, T. Lelièvre ${ }^{1}$,
${ }^{1}$ CERMICS, Ecole des Ponts ParisTech, 6/8 av. Blaise Pascal - Citée Descartes, 77455 Marne-La-Vallée, FRANCE and Equipe-projet MATHERIALS, Inria Paris, 2 rue Simone Iff, CS 4211275589 Paris Cedex 12
${ }^{2}$ IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP3, 69360 Solaize, France
${ }^{3}$ IFP Energies nouvelles, 1-4 Avenue du Bois Préau, 92852 Rueil-Malmaison, France
*thomas.pigeon@inria.fr

Introduction

An elementary step of a chemical reaction links two metastable states. The transition mechanism and the time to perform the transition for each of these elementary chemical step is required to better understand the catalytic processes. Direct numerical simulations (DNS) are generally out of reach when using ab initio molecular dynamics (AIMD) because of their computational cost. Dedicated rare event simulation methods have therefore been devised to overcome this limitation. In this work, one of these methods called Adaptive Multilevel Splitting (AMS $)^{1,2}$ is studied, combined with ab initio molecular dynamics (AIMD). As many other rare event methods, it requires some information on the progress of the transition, quantified here using a one-dimensional Reaction Coordinate (RC). Determining such a RC challenges chemical intuition for complex systems, which is why we turn instead to machine learning approaches. This approach is applied to explore the reactivity of water on alumina surface as a case study.

AMS behavior on a two-dimensional case

Estimation of the probability of reaching B before A given a fixed initial condition given that $\tilde{p}_{\Sigma_{A} \rightarrow B} \simeq 10^{-5}$.

AMS algorithm is designed to estimate low probabilities and in the given case, the target probability is such that the efficiency of AMS compared to DNS strongly depends on the reaction coordinate.

Learning a CV for a more realistic case: dissociation of water on $\boldsymbol{\gamma}$-alumina

Illustration with our "toy model": Water dissociation on a (100) $\mathrm{Y}-\mathrm{Al}_{2} \mathrm{O}_{3}$ surface. ${ }^{4}$ This material is a widely used catalytic support. It is active in presence of water through is Brønsted and Lewis acidities.
The molecule can be either dissociated (D_{i} states) or associated (A_{i}). Rotation (r) and transitions between different $A_{i} \leftrightarrow D_{j}$ states are possible.

Method:

1. Identify the different metastable states (intermediates)
2. Run short dynamics in these states to gather structures
3. Train machine learning model with the proper labelling

Focus on 1D Reaction Coordinates which requires to be invariant under:

System symmetries
Rotation
Atom indices permutation

This is enforced by using the Smooth Overlap of Atomic Positions (SOAP) atom centered descriptor.

Reaction Coordinate : 1-vs-all Support Vector Machines (SVM) classifiers decision function.
Σ defined through these RCs.
Using AMS and these RCs allows to estimate the probabilities:
$\tilde{p}_{\Sigma_{\mathrm{A}_{1}} \rightarrow \text { any }}, \tilde{p}_{\Sigma_{\mathrm{A}_{2} \mathrm{~A}_{3}} \rightarrow \text { any }}, \tilde{p}_{\Sigma_{\mathrm{A}_{4}} \rightarrow \text { any }}, \tilde{p}_{\Sigma_{\mathrm{D}_{1} D_{3}} \rightarrow \text { any }}$ and $\tilde{p}_{\Sigma_{\mathrm{D}_{2} \mathrm{D}_{4}} \rightarrow \text { any }}$
State to state probability are computed given the number of replicas $n_{\mathrm{X}}^{\text {in }}$ finishing in the state

$$
\tilde{p}_{\Sigma_{X} \rightarrow Y}=\frac{n_{X}^{\text {in }}}{N} \tilde{p}_{\Sigma_{X} \rightarrow \text { any }}
$$

Transition rates are finally computed computed:

Conclusion and perspectives

The SOAP-SVM Reaction Coordinates used in this case study has proven to be able to successfully estimate rates with AMS. A transition which was not anticipated intuitively was observed $\left(A_{4} \rightarrow A_{1}\right)$. The paths observed will be used to build path collective variables to better characterize the rates and obtain a better sampling of the transition path. Another perspective is to use the reactive trajectories to build some reaction coordinate with some auto-encoders models.

