

COMPUTING REACTION TIMES AND PATHS WITH MACHINE LEARNING AND RARE EVENT SAMPLING METHODS

THOMAS PIGEON

Pascal Raybaud¹, Manuel Corral Valero¹, Ani Anciaux-Sedrakian², Maxime Moreaud² Gabriel Stoltz³, Tony Lelièvre³

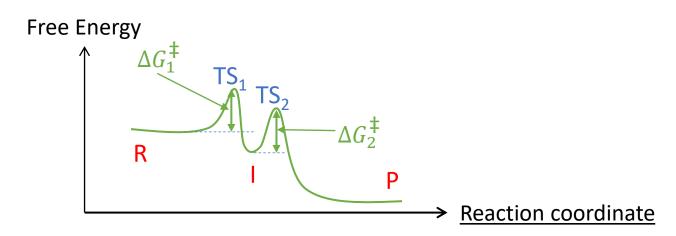
¹ IFPEN: Catalysis, Biocatalysis and Separation
² IFPEN: Digital Science and Technology
³ CERMICS, Ecole des Ponts ParisTech, and Equipe-projet MATHERIALS, Inria Paris,

INTRODUCTION: REACTION MECHANISMS

Targets:

compute reaction rates

identify reaction mechanism



Different methods exist:

- Transition State Theory (TST): for instance, Eyring-Polanyi equation $\mathbf{k}^{hTST} = \frac{k_{\mathrm{B}}T}{h}e^{-\frac{\Delta G^{\mathsf{T}}}{k_{\mathrm{B}}T}}$ Using free energy computed by static approach within harmonic approximation or Molecular Dynamics (MD)
- Alternatively: MD and Rare events simulation methods to access directly the reaction time Hill relation²: $k^{Hill} = p_{R \rightarrow P} \phi_{R}$

² Hill, T. (2012) Free energy transduction in biology: The steady-state kinetic and thermodynamic formalism. *Elsevier Science and Technology Books*

¹ Eyring, H. (1935). The activated complex in chemical reactions. *The Journal of Chemical Physics*, *3*(2), 107-115.

NTRODUCTION: STANDARD MOLECULAR DYNAMICS

Simulates the dynamic of the system by adding a thermostat to newton equations of motion

ex. Langevin formalism¹ NVF ensemble

NVT ensemble

$$\begin{cases} dq_t = M^{-1}p_t dt \\ dp_t = -\nabla V(q_t) dt - \gamma p_t dt + \sqrt{2\gamma M k_B T} dW_t \end{cases}$$

Preserves energy Newton equation

Dissipate energy Provides energy Langevin part

Not efficient for the simulation of rare events due to high energy barriers and entropic bottlenecks

Time scales:

integration time step : $\sim 10^{-15}s$ rare event rate $\sim 10^{-9}s^{-1}$ to 10^3s^{-1}

MD based approaches to overcome barriers:

- TST → biased MD such as Metadynamics², Blue-Moon sampling³ ...

Dynamics is lost but rates are estimated from free energy

- Hill → rare events sampling methods such as Adaptive multi-level splitting⁴

Dynamics preserved thus the rates can directly be computed

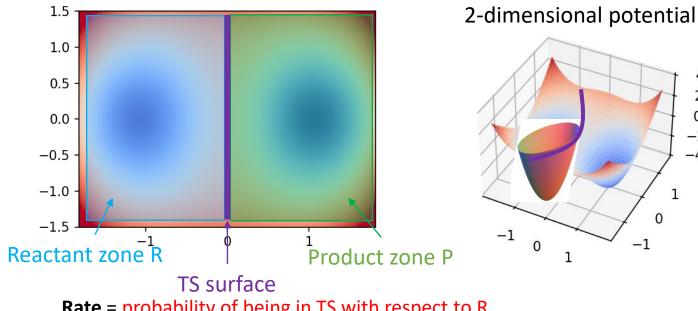
¹ Langevin P. (1908). Comptes-Rendus de l'Académie des Sciences, 146, 530-532

² Laio, A., & Parrinello, M. (2002) *Proceedings of the National Academy of Sciences*, 99(20), 12562-12566.

³ Carter, E. A., Ciccotti, G., Hynes, J. T., & Kapral, R. (1989). *Chemical Physics Letters*, 156(5), 472-477.

⁴Cérou, F., & Guyader, A. (2007) Stochastic Analysis and Applications, 25(2), 417-443.

Transition State Theory

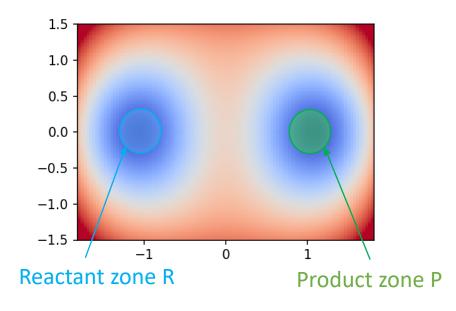


Rate = probability of being in TS with respect to R
× frequency of decomposition to P

$$\mathbf{k}^{TST} = p(TS \mid R) \phi_{TS \rightarrow P} \qquad \mathbf{k}^{hTST} = e^{-\frac{\Delta G^{\ddagger}}{k_{\mathrm{B}}T}} \frac{k_{\mathrm{B}}}{h}$$

Sensitive to the TS definition TST overestimates rates (κ) hTST poorly captures entropy

Hill relation



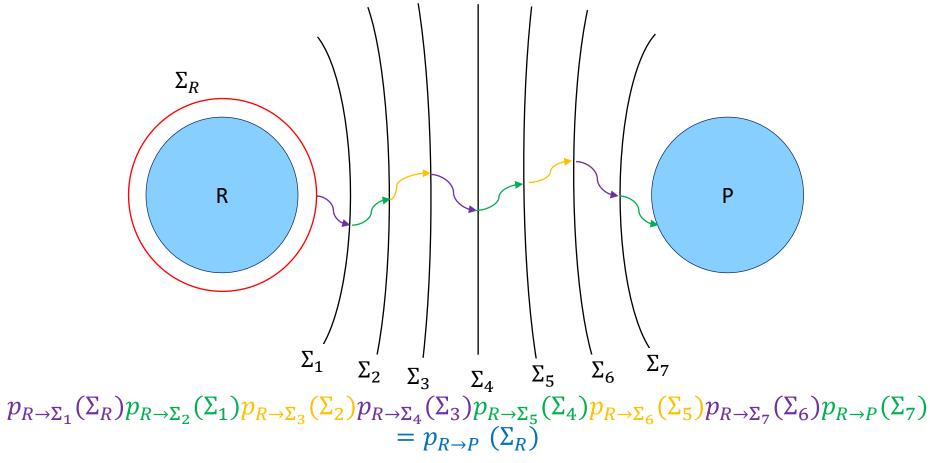
Rate = probability of reaching P before R starting from $\partial R \times$ frequency of exits of R

$$\mathbf{k}^{Hill} = p_{R \to P}(\partial R) \, \phi_R$$

Not extremely sensitive to the definition of R and P

¹ Hänggi, P. Talkner, P. Borkovec, M. (1990) Reaction-rate theory: fifty years after Kramers *Reviews of Modern Physics*, Vol. 62, No. 2 American Physical Society (APS) p. 251-341 ² Hill, T. (2012) Free energy transduction in biology: The steady-state kinetic and thermodynamic formalism. *Elsevier Science and Technology Books*

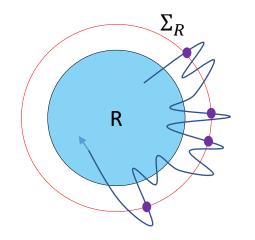
What is a Multilevel Splitting estimator:



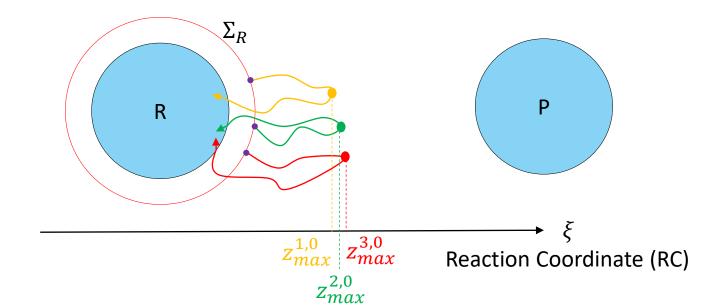
How to place Σ_i and compute $p_{R\to\Sigma_{i+1}}(\Sigma_i)$?

- lacktriangle AMS aims at estimating $p_{\Sigma \to P}^{1,2}$. It can be split in 3 steps:
 - 1. Generating initial conditions on Σ and estimate $t_{R-\Sigma-R}=\frac{1}{\phi_R}$
 - 2. Initialize N replicas by running an unbiased dynamics until it reaches R or P. Set p = 1. Classify all the replicas by increasing ξ_{max} .
 - 3. Apply the AMS loop until all replicas have reached P.

1. Initial conditions and flux



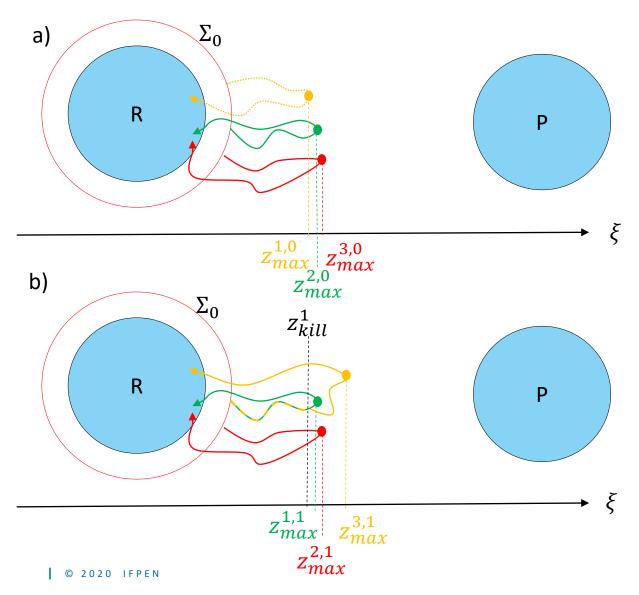
MD for Initial conditions.



2. Initialization

¹ F. Cérou, A. Guyader, *Stochastic Analysis and Applications* **25**, 417-443 (2007).

² L. J. S. Lopes, T. Lelièvre, *Journal of computational chemistry* **40**, 1198-1208 (2019).



- 3. AMS iterations: $i \geq 0$
- a) Save the smallest $(z_{max}^{1,i})$ as z_{kill}^{i+1} and delete all the trajectories that did not "go above" z_{kill}^{i+1}
- b) Randomly select one trajectory within the remaining ones. Copy it until it reaches z_{kill}^{i+1} and continue it until it reaches R or P.
- c) Classify all the replicas by increasing z_{max} .

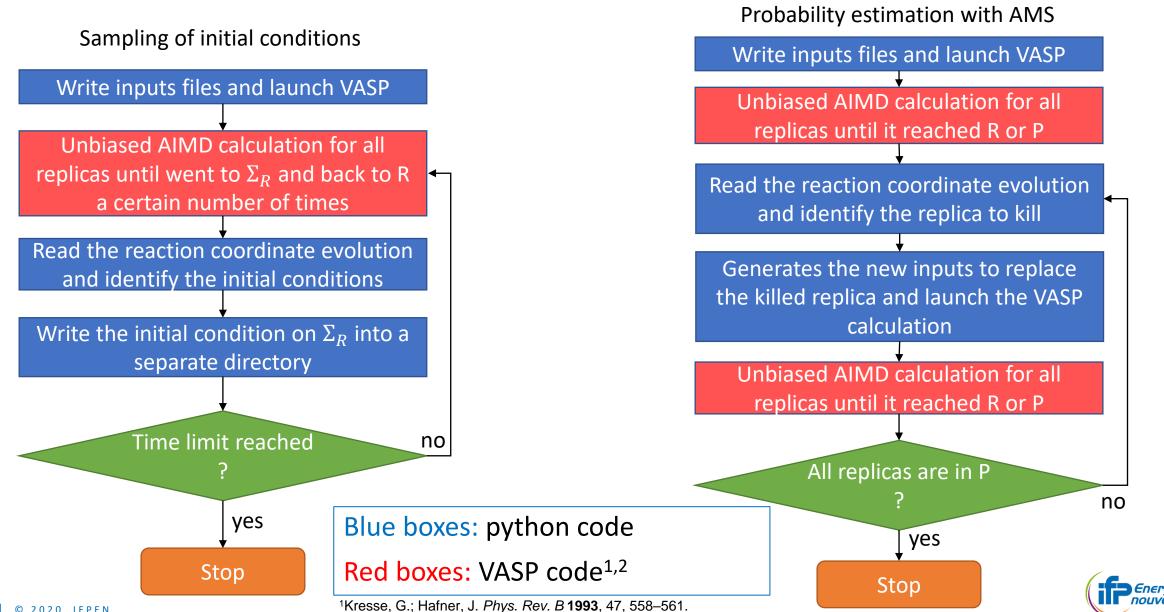
$$\tilde{p} = \prod_{i=0}^{i_{max}} \tilde{p}_{\sum_{z_{kill}^{i} \to \sum_{z_{kill}^{i+1}}} = \left(1 - \frac{1}{N}\right)^{i_{max}}$$

Unbiased estimator:

Variance depends on RC:

$$\mathbb{E}[\tilde{p}] = p_{R-P}(\Sigma_R) \qquad \qquad \mathsf{Var}[\tilde{p}] = f(\xi)$$

$$Var[\tilde{p}] = f(\xi)$$



²Kresse, G.; Joubert, D Phys. Rev. B 1999, 59, 1758–1775.

Multistate problem

With

$$R = A_1$$

$$\Sigma_R = \Sigma_{A_1}$$

$$P = A_2 A_3 \cup A_4 \cup D_1 D_3 \cup D_2 D_4$$

AMS can sample:

$$A_1 \rightarrow A_2 A_3$$

$$A_1 \rightarrow A_4$$

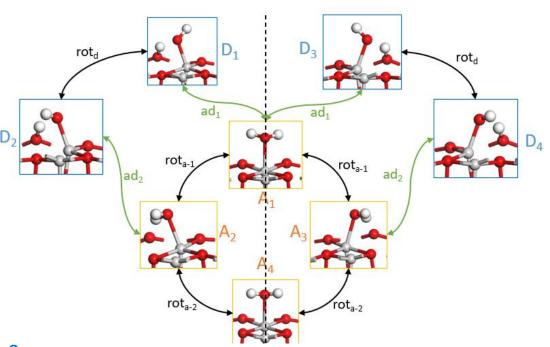
$$A_1 \rightarrow D_1 D_3$$

$$A_1 \rightarrow D_2 D_4$$

 $A_1 \rightarrow D_1 D_3$ $A_1 \rightarrow D_2 D_4$

 \rightarrow Answers how A_1 can decompose?

The most probable transition will be sampled, with precision conditioned by ξ



Metastable states of H₂O on the (100) surface of γ-alumina

With

$$R = A_1 \cup A_2 A_3 \cup A_4 \cup D_2 D_4$$

$$\Sigma_R = \Sigma_{A_1}$$

$$P = D_1 D_3$$

AMS can sample :

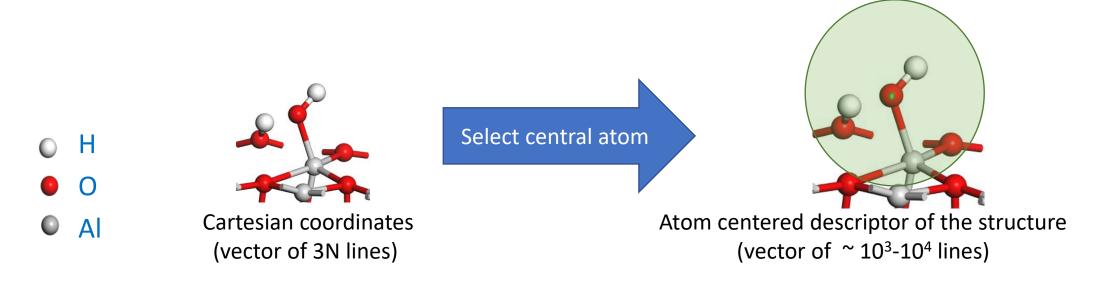
$$A_1 \rightarrow D_1 D_3$$

→ Focus specifically on one event

Quality of the sampling depends on ξ

Method:

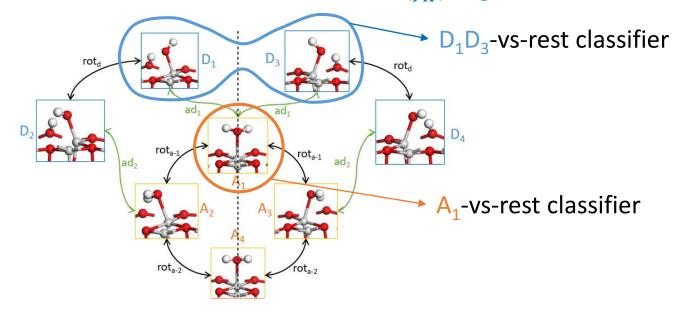
- 1. Identify the various metastable states (intermediates)
 - \rightarrow dissociated (D_i) or associated (A_i)
- 2. Run short dynamics in these states to sample Potential Energy Surface (PES) around the minima
- 3. SOAP¹ atom centered descriptors to numerically encode the structure for training the MLCV.



¹Bartók, A. P., Kondor, R., & Csányi, G. (2013). On representing chemical environments. *Physical Review B*, 87(18), 184115.

SVM classifiers separate two sets of points by the highest margin plane.

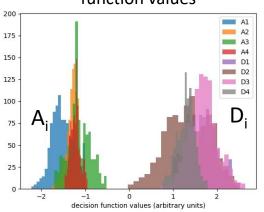
SOAP-SVM CV : classifier decision function (f_X) : algebraic distance to the plane.



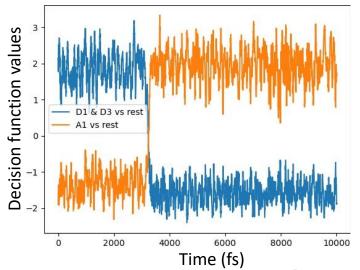
Classifier decision function interpretation:

$$f_X(q) \in (-\infty, -1] \iff q \in X$$

Histogram of SVM classifier decision function values



Training set : A1 = 0, D1 = 1





Dissociation	Hill	hTST
$k_{A_1 \to D_1 D_3} =$	$1.6 \ 10^9 \ s^{-1}$	$3.4 \ 10^{11} \ s^{-1}$
$k_{D_1D_2 \to A_1} =$	$2.3 \ 10^{10} \ s^{-1}$	$1.1 \ 10^{12} \ s^{-1}$

Rotation	Hill	hTST
$k_{A_1 \to A_2 A_3} =$	$3.8 \ 10^{10} \ s^{-1}$	$7.6 \ 10^{10} \ s^{-1}$
$k_{A_2A_3\to A_1} =$	$1.5 \ 10^{11} \ s^{-1}$	$2.1 \ 10^{12} \ s^{-1}$

hTST rates are larger

Might come from entropy estimation.

~ 2 10⁶ CPU Hours

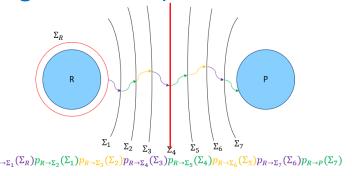
Published

TP, G. Stoltz, M. Corral-Valero, A. Anciaux-Sedrakian, M. Moreaud, T. Lelièvre, P. Raybaud J. Chem. Theory Comput. 2023, 19, 12, 3538–3550

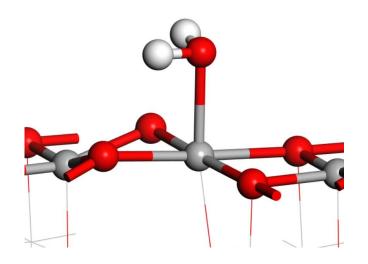
Identify TS structures

TS in the sense of committor function $p_{R\to P}$ (probability of reaching P before R)¹

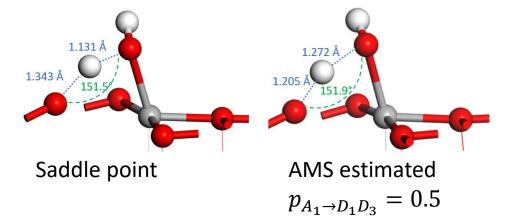
Find the level of the RC
$$z^n_{kill}$$
 such that $p_{R \to P}\left(\sum_{z^n_{kill}}\right) = 0.5$
$$\prod_{i=n}^{i_{max}} \tilde{p}_{R \to \sum_{z^{i+1}_{kill}}}\left(\sum_{z^i_{kill}}\right) = 0.5$$



Along each trajectory, take the structure right after the level $\sum_{z_{kill}^n}$ is crossed, then find the average structure



Example for the $A_1 \rightarrow D_1D_3$ reaction

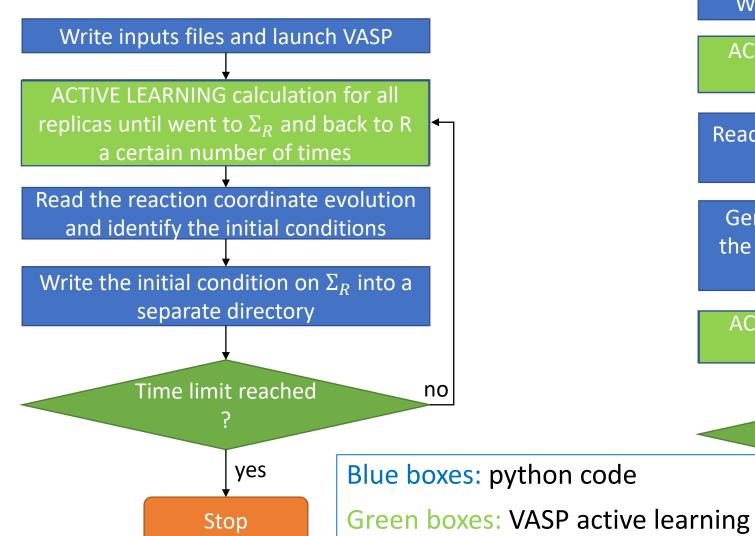


¹ Vanden-Eijnden, E. Transition Path Theory (2006) in Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology Volume 1 Springer Berlin Heidelberg: Berlin, Heidelberg p. 453-493

III. USING AMS WITH ACTIVE LEARNING

AMS IMPLEMENTATION WITH VASP (PLANE WAVE DFT)

Sampling of initial conditions



Probability estimation with AMS

Write inputs files and launch VASP ACTIVE LEARNING calculation for all replicas until it reached R or P Read the reaction coordinate evolution and identify the replica to kill Generates the new inputs to replace the killed replica and launch the VASP calculation **ACTIVE LEARNING calculation for all** replicas until it reached R or P All replicas are in P no yes Stop

¹Jinnouchi, R.; Karsai, F.; Kresse, G. *Phys. Rev. B* **2019**, 100, 014105.

² Jinnouchi, R.; Miwa, K.; Karsai, F.; Kresse, G.; Asahi, R. The Journal of Physical Chemistry Letters 2020, 11, 6946–6955.

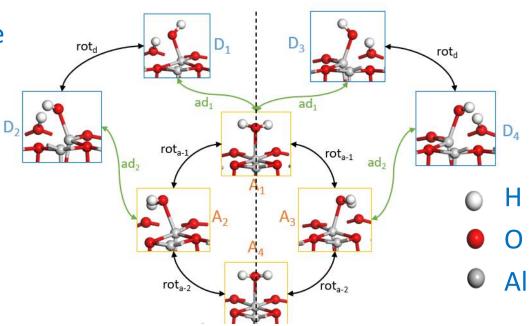
III. USING AMS WITH ACTIVE LEARNING

Method:

- 1. Identify the various metastable states (intermediates)
 - \rightarrow dissociated (D_i) or associated (A_i)
- 2. Run active learning dynamics in these states to sample Potential Energy Surface (PES) around the minima

 D_1 dissociated structure dt = 1 fs Total time = 50 ps

3. Concatenate the dataset (containing E, Forces, and positions)

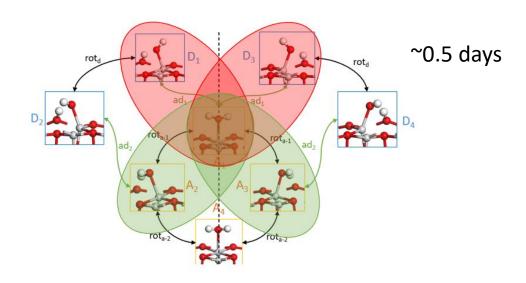


Identified structures and **intuitively** plausible transitions

III. USING AMS WITH ACTIVE LEARNING

Wall clock time

~10 days



~2 days

Dissociation

with $N_{rep} = 200$ and $M_{real} = 10$

DFT

$$k_{A_1 \to D_1 D_3} =$$

$$1.64\ 10^9\ s^{-1}$$

$$1.64\ 10^9\ s^{-1}$$
 $\pm 1.59\ 10^9\ s^{-1}$

MLFF prediction

$$k_{A_1 \to D_1 D_3} =$$

$$2.76 \ 10^9 \ s^{-1}$$

$$2.76 \ 10^9 \ s^{-1}$$
 $\pm 3.81 \ 10^9 \ s^{-1}$

with
$$N_{rep} = 800$$
 and $M_{real} = 10$

$$k_{A_1 \to D_1 D_3} =$$

$$2.43\ 10^9\ s^{-1}$$
 $\pm 1.15\ 10^9\ s^{-1}$

$$\pm 1.15 \ 10^9 \ s^{-3}$$

17

CONCLUSION AND PERSPECTIVES

- hTST overestimate the DFT-MD rate estimated using AMS
- MLFF-MD and DFT-MD rates are consistent
- MLFF used in prediction mode drastically reduces de computational cost
- Current implementation of AMS with VASP limits the application of active learning

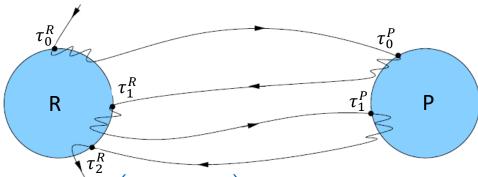
 → Restart does have an important cost for the active learning.
- Using FLARE¹ active learning with VASP as calculator of ab-initio seems a good opportunity as AMS could be implemented more easily
- Active learning of RC ξ can be included in the workflow

[1] Vandermause, J., Xie, Y., Lim, J.S., Owen, C.J. and Kozinsky, B., 2021. Active learning of reactive Bayesian force fields: Application to heterogeneous hydrogen-platinum catalysis dynamics.

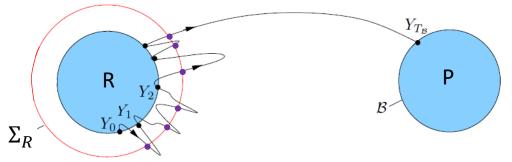
arXiv preprint arXiv:2106.01949.

Thank you for you attention

Transition time:
$$\frac{1}{k_{RP}} = t_{RP} = mean(\tau_i^R - \tau_i^P)$$



We model the reaction time as: $\frac{1}{k_{RP}} = t_{RP} = \left(\frac{1}{p_{\Sigma_R - P}} - 1\right)(t_{R - \Sigma} + t_{\Sigma - R}) + t_{R - \Sigma}^{\dagger} + t_{\Sigma - P} \approx \frac{t_{R \to \Sigma \to R}}{p_{\Sigma_R \to P}} = \frac{1}{p_{\Sigma_R \to P} \phi_R}$

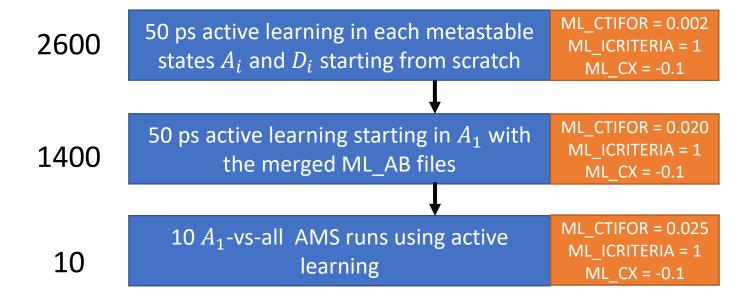


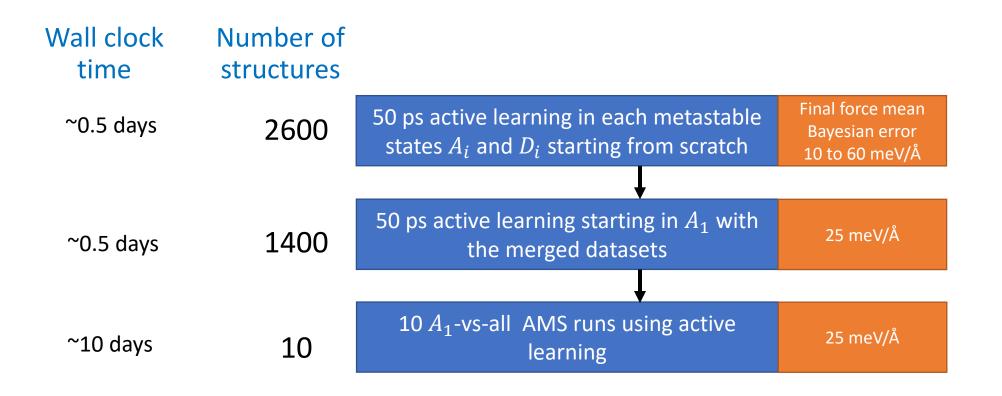
 p_{Σ_R-P} : probability of reaching P before R when starting from Σ_R .

¹ Baudel, M., Guyader, A., & Lelièvre, T. (2020). On the Hill relation and the mean reaction time for metastable processes. arXiv preprint, arXiv:2008.09790.

III. USING AMS WITH VASP ACTIVE LEARNING

Number of structures added to the dataset:





Threshold updated using the stored Bayesian errors^{1,2}

→ Transitions already sampled during first two steps?

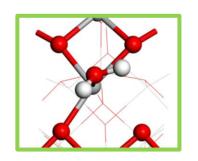
¹ Jinnouchi, R.; Karsai, F.; Kresse, G. Phys. Rev. B **2019**, 100, 014105.

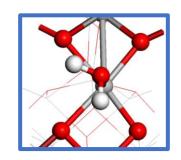
² Jinnouchi, R.; Miwa, K.; Karsai, F.; Kresse, G.; Asahi, R. *The Journal of Physical Chemistry Letters* **2020**, 11, 6946–6955.

Use K-means clustering method to identify groups of trajectories.

Based on SOAP descriptor + PCA to describe 5 structures per trajectory.

5 Structures = First time trajectory cross RC iso-levels





- → Reactive trajectories
- Iso-levels of a reaction coordinate

