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INTRODUCTION: CHARACTERIZING REACTION MECHANISMS

Targets : compute reaction rates (average times)

identify reaction paths (how atoms rearranges themselves)

Different methods exist:
• Transition State Theory (TST) 
→ Need to estimate free energy

• Directly from the time evolution of the system ?

→ Need Molecular Dynamics (MD)  

R
P

Free Energy

I

TS1 TS2

Reaction coordinate

Δ𝐺1
‡

Δ𝐺2
‡
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INTRODUCTION: STANDARD MOLECULAR DYNAMICS

Simulates the dynamic of the system by adding a thermostat to newton equations of motion 

ex. Langevin formalism1

Not efficient for the simulation of rare events due to high energy barriers and entropic bottlenecks

Time scales: integration time step : ~ 10−15𝑠 rare event rate ~ 10−9𝑠−1 to 103𝑠−1 

൝
𝑑𝑞𝑡 = 𝑀−1𝑝𝑡𝑑𝑡 

𝑑𝑝𝑡 = −𝛻𝑉 𝑞𝑡 𝑑𝑡 − 𝛾𝑝𝑡𝑑𝑡 + 2𝛾𝑀𝑘𝐵𝑇𝑑𝑊𝑡

Dissipate energy Provides energyPreserves energy
Newton equation Langevin part

1 P. Langevin P. (1908),  Comptes-Rendus de l'Académie des Sciences, 146, 530
2 A. Laio, M. Parrinello, (2002) PNAS, 99, 20, 12562
3 E. A. Carter, G. Ciccotti, J. T. Hynes, R. Kapral, (1989). Chem. Phys. Lett., 156, 5, 472
4 Cérou, F., & Guyader, A. (2007) Stoch. Anal. Appl., 25, 2, 417

NVE ensemble NVT ensemble

MD based approaches to overcome barriers: 
→ biased MD such as Metadynamics2, Blue-Moon sampling3 … 

Dynamics is lost but we can estimate free energy
→ rare events sampling methods such as Adaptive multi-level splitting4

Dynamics preserved and rates can be “directly” be computed

3
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Transition State Theory

1 H. Eyring, (1935). J. Chem. Phys., 3, 2, 107
2 P. Hänggi, P. Talkner, M. Borkovec, (1990) Rev. Mod. Phys., 62, 2, 251
2 T. Hill, (2012) Free energy transduction in biology: The steady-state kinetic and thermodynamic formalism. Elsevier Science and Technology Books

I. ADAPTIVE MULTI-LEVEL SPLITTING METHOD FOR REACTION RATES 

Hill relation

TS surface

𝒌𝑇𝑆𝑇 = 𝑝 𝑇𝑆 𝑅) 𝜙𝑇𝑆 →𝑃 

Product zone PReactant zone R
Product zone PReactant zone R

𝒌𝐻𝑖𝑙𝑙 = 𝑝𝑅 →𝑃(𝜕𝑅) 𝜙𝑅 

Rate = probability of being in TS with respect to R 
× frequency of decomposition to P

Rate = probability of reaching P before R 
starting from 𝜕𝑅 × frequency of exits of R

𝒌ℎ𝑇𝑆𝑇 =  𝑒
−

Δ𝐺 
‡

𝑘B𝑇
𝑘B𝑇

ℎ

Not extremely sensitive to the
definition of R and P

Sensitive to the TS definition
TST overestimates rates (𝜅)

2-dimensional potential 

hTST poorly captures entropy  
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What is a Multilevel Splitting estimator:

𝑝𝑅→Σ1
(Σ𝑅)𝑝𝑅→Σ2

(Σ1)𝑝𝑅→Σ3
(Σ2)𝑝𝑅→Σ4

(Σ3)𝑝𝑅→Σ5
(Σ4)𝑝𝑅→Σ6

(Σ5)𝑝𝑅→Σ7
(Σ6)𝑝𝑅→𝑃(Σ7)

= 𝑝𝑅→𝑃 (Σ𝑅)

How to place Σ𝑖 and compute 𝑝R→Σ𝑖+1
(Σ𝑖) ?

R P

Σ𝑅

Σ1 Σ2 Σ3 Σ4
Σ5

Σ6
Σ7
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AMS aims at estimating 𝑝Σ→𝑃
1,2. It can be split in 3 steps:

1. Generating initial conditions on Σ and estimate 𝑡𝑅−Σ −𝑅 =
1

𝜙𝑅

2. Initialize N replicas by running an unbiased dynamics until it reaches R or P. Set p = 1. 
Classify all the replicas by increasing ξmax. 

3. Apply the AMS loop until all replicas have reached P.

R P

Σ𝑅

R

Σ𝑅

MD for Initial conditions. 

𝜉
Reaction Coordinate (RC)𝑧𝑚𝑎𝑥

1,0

𝑧𝑚𝑎𝑥
2,0

𝑧𝑚𝑎𝑥
3,0

1 F. Cérou, A. Guyader, (2007) Stoch. Anal. and Appl. 25, 2, 417.
2 L. J. S. Lopes, T. Lelièvre, (2019) J. Comput. Chem. 40, 1198

2. Initialization1. Initial conditions and flux

I. ADAPTIVE MULTI-LEVEL SPLITTING METHOD FOR REACTION RATES 6
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3. AMS iterations: 𝑖 ≥ 0

a) Save the smallest (𝑧𝑚𝑎𝑥
1,𝑖 ) as 𝑧𝑘𝑖𝑙𝑙

𝑖+1 and delete all
the trajectories that did not “go above” 𝑧𝑘𝑖𝑙𝑙

𝑖+1

b) Randomly select one trajectory within the
remaining ones. Copy it until it reaches 𝑧𝑘𝑖𝑙𝑙

𝑖+1 and
continue it until it reaches R or P.

c) Classify all the replicas by increasing zmax. 

R P

Σ0

𝜉

R P

Σ0

𝜉

𝑧𝑚𝑎𝑥
1,0

𝑧𝑚𝑎𝑥
2,0

𝑧𝑚𝑎𝑥
3,0

𝑧𝑘𝑖𝑙𝑙
1

𝑧𝑚𝑎𝑥
3,1𝑧𝑚𝑎𝑥

1,1

𝑧𝑚𝑎𝑥
2,1

𝔼 𝑝 = 𝑝𝑅−𝑃(Σ𝑅)

Unbiased estimator:

Var 𝑝 = 𝑓(𝜉) 

Variance depends on RC:

𝑝 = ෑ

𝑖=0

𝑖𝑚𝑎𝑥

𝑝Σ
𝑧𝑘𝑖𝑙𝑙

𝑖 →Σ
𝑧𝑘𝑖𝑙𝑙

𝑖+1
= 1 −

1

𝑁

𝑖𝑚𝑎𝑥

1 G. Kresse, J. Hafner, (1993) J. Phys. Rev. B, 47, 558–561.
2 G. Kresse, D. Joubert, (1999) Phys. Rev. B,59, 1758–1775.

Implemented with VASP software1,2
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With
𝑅 = 𝐴1
Σ𝑅 = Σ𝐴1
𝑃 = 𝐴2𝐴3 ∪ 𝐴4 ∪ 𝐷1𝐷3 ∪ 𝐷2𝐷4

AMS can sample :

𝐴1 → 𝐴2𝐴3
𝐴1 → 𝐴4
𝐴1 → 𝐷1𝐷3
𝐴1 → 𝐷2𝐷4

→ Answers how 𝐴1 can decompose ?

The most probable transition will be 
sampled, with precision conditioned by 𝜉

With 

𝑅 = 𝐴1 ∪ 𝐴2𝐴3 ∪ 𝐴4 ∪ 𝐷2𝐷4 
Σ𝑅 = Σ𝐴1

𝑃 = 𝐷1𝐷3

AMS can sample :

𝐴1 → 𝐷1𝐷3

→ Focus specifically on one event 

Quality of the sampling depends on 𝜉

II. AIMD METHOD APPLIED TO WATER DISSOCIATION ON (100) SURFACE 

Metastable states of H2O on the (100)  
surface of γ-alumina

Multistate problem 

8
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Cartesian coordinates
(vector of 3N lines) 

Select central atom

Atom centered descriptor of the structure
(vector of  ~ 103-104 lines)

H

O

Al

1 A. P. Bartók, R. Kondor, .. G. Csányi, (2013) Phys. Rev. B, 87, 18, 184115.

Method: 

1. Identify the various metastable states (intermediates)
→ dissociated (Di) or associated (Ai)

2. Run short dynamics in these states to sample Potential Energy Surface (PES) around the 
minima 

3. SOAP1 atom centered descriptors to numerically encode the structure for training the MLCV.  

II. AIMD METHOD APPLIED TO WATER DISSOCIATION ON (100) SURFACE 9
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SVM classifiers separate two sets of points by the highest margin plane1

SOAP-SVM CV : classifier decision function (𝑓𝑋): algebraic distance to the plane. 

Identified structures and 
Intuitively plausible transitions

D1D3-vs-rest classifier

A1-vs-rest classifier

Time (fs)

D
ec

is
io

n
 f

u
n

ct
io

n
 v

al
u

es

Classifier decision function interpretation:
𝑓𝑋 𝒒  ∈ (−∞, −1]  ⇔ 𝒒 ∈ 𝑋 

 

Training set : A1 = 0, D1 = 1

Histogram of SVM classifier decision 
function values

Ai
Di

1 K. P. Murphy, (2022) Probabilistic Machine Learning: An introduction; MIT Press: , 2022

II. AIMD METHOD APPLIED TO WATER DISSOCIATION ON (100) SURFACE 10



|   T h o m a s  P i g e o n  |  I C C  2 0 2 4  |  L y o n  

Dissociation Hill hTST

𝑘𝐴1→𝐷1𝐷3

 =  1.6 109 𝑠−1 3.4 1011 𝑠−1

𝑘𝐷1𝐷3→𝐴1

 =  2.3 1010 𝑠−1 1.1 1012 𝑠−1

Rotation Hill hTST

𝑘𝐴1→𝐴2𝐴3

 =  3.8 1010 𝑠−1 7.6 1010 𝑠−1

𝑘𝐴2𝐴3→𝐴1

 =  1.5 1011 𝑠−1 2.1 1012 𝑠−1

hTST rates are larger 

Might come from entropy estimation / recrossing

~ 2 106 CPU Hours 

1 TP, G. Stoltz, M. Corral-Valero, A. Anciaux-Sedrakian, M. Moreaud, T. Lelièvre, P. Raybaud (2023) J. Chem. Theory Comput. 19, 12, 3538–3550

II. AIMD METHOD APPLIED TO WATER DISSOCIATION ON (100) SURFACE 11
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Identify TS structures

TS in the sense of committor function 𝑝𝑅→𝑃 (probability of reaching P before R)1

Find the level of the RC 𝑧𝑘𝑖𝑙𝑙
𝑛 such that 𝑝𝑅→𝑃 Σ𝑧𝑘𝑖𝑙𝑙

𝑛 = 0.5

ෑ

𝑖=𝑛

𝑖𝑚𝑎𝑥

𝑝𝑅→Σ
𝑧𝑘𝑖𝑙𝑙

𝑖+1
Σ

𝑧𝑘𝑖𝑙𝑙
𝑖 = 0.5

Along each trajectory, take the structure right after the level Σ𝑧𝑘𝑖𝑙𝑙
𝑛 is crossed, then find the average 

structure 
Example for the 𝐴1 → 𝐷1𝐷3 reaction 

Saddle point AMS estimated 
𝑝𝐴1→𝐷1𝐷3

= 0.5

1 E. Vanden-Eijnden, E. Transition Path Theory (2006) in Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology. p 453-493

II. AIMD METHOD APPLIED TO WATER DISSOCIATION ON (100) SURFACE 12
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Method to train a MLFF1,2: 

1. Identify the various metastable states (intermediates)

→ dissociated (Di) or associated (Ai)

2. Run active learning dynamics in these states to sample 
Potential Energy Surface (PES) around the minima

3. Concatenate the dataset  (containing E, Forces, and 
positions)

4. AMS with Active learning 

5. Re-fit the force field
Identified structures and 

intuitively plausible transitions

H

O

Al

dt = 1 fs
Total time = 50 ps

D1 dissociated 
structure 

→ Rate can be estimated with AMS with MLFF without active learning 

III. REDUCING AMS COMPUTATIONAL COST WITH MACHINE LEARNING 
FORCE FIELD

1 R. Jinnouchi, F. Karsai, G. Kresse, G. (2019) Phys. Rev. B, 100, 014105.
2 R. Jinnouchi, K. Miwa, F. Karsai, G. Kresse, R. Asahi, (2020) J. Phys. Chem. Lett., 11, 6946–6955.

13
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with Nrep = 200 and Mreal = 10

DFT 

𝑘𝐴1→𝐷1𝐷3

 =  (1.64 ±  1.59) 109 𝑠−1 

MLFF

𝑘𝐴1→𝐷1𝐷3

 = 2.76 ±  3.81 109 𝑠−1 

with Nrep = 800 and Mreal = 10

𝑘𝐴1→𝐷1𝐷3

 =  (2.43 ± 1.15) 109 𝑠−1 

𝐴1 → 𝐷1𝐷3 Dissociation

Test MAE forces =76 meV/Å
Test MAE energy = 20 meV

1000 configurations randomly drawn 
from sampled reactive trajectories 

III. REDUCING AMS COMPUTATIONAL COST WITH MACHINE LEARNING 
FORCE FIELD

14
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• hTST overestimate the DFT-MD rate estimated using AMS

• MLFF-MD and DFT-MD rates are consistent

• MLFF used in prediction mode drastically reduces de computational cost

• Current implementation of AMS with VASP limits the application of active learning
→Restart does have an important cost for the active learning.

• Using D-optimality criterion active learning with VASP as calculator of ab-initio with ACE potential 
seems a good opportunity1

• Active learning of RC 𝜉 can be included in the workflow2

CONCLUSION AND PERSPECTIVES

1 Y. Lysogorskiy, A. Bochkarev, M. Mrovec, R. Drautz, (2023) Phys. Rev. Mater.,  7, 4, 043801
2 T. Lelièvre, TP, G. Stoltz, W. Zhang, (2024) J. Phys. Chem. B, 128, 11, 2607

15
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Thank you for you attention 



|   T h o m a s  P i g e o n  |  I C C  2 0 2 4  |  L y o n  

Transition time: 
1

𝑘𝑅𝑃
= 𝑡𝑅𝑃 =  𝑚𝑒𝑎𝑛 𝜏𝑖

𝑅 − 𝜏𝑖
𝑃

We model the reaction  time as:
1

𝑘𝑅𝑃
= 𝑡𝑅𝑃 =

1

𝑝Σ𝑅−𝑃
− 1 𝑡𝑅−Σ + 𝑡Σ−𝑅 + 𝑡𝑅 −Σ

† + 𝑡Σ−𝑃 ≈
𝑡𝑅→Σ→R

𝑝Σ𝑅→𝑃
=

1

𝑝Σ𝑅→𝑃 𝜙𝑅

𝑝Σ𝑅−𝑃: probability of reaching P before R when starting from Σ𝑅.
1 Baudel, M., Guyader, A., & Lelièvre, T. (2020). On the Hill relation and the mean reaction time for metastable processes. arXiv preprint, arXiv:2008.09790.

PR
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PR

𝜏0
𝑃

𝜏1
𝑃

𝜏2
𝑅

𝜏1
𝑅

𝜏0
𝑅

Σ𝑅
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Use K-means clustering method to identify groups of 
trajectories. 

Based on SOAP descriptor + PCA to describe  5 
structures per trajectory. 

5 Structures = First time trajectory cross RC iso-levels

II. AIMD METHOD APPLIED TO WATER DISSOCIATION ON (100) SURFACE 

A4

A2
A3

A1

Σ𝐴4

Reactive trajectories

Iso-levels of a reaction coordinate

18
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Total number 
of structures

2600

4000

4010

50 ps active learning in each metastable 
states 𝐴𝑖 and 𝐷𝑖 starting from scratch 

50 ps active learning starting in 𝐴1 with 
the merged datasets

10 𝐴1-vs-all  AMS runs using active 
learning 

Final force mean 
Bayesian error 
10 to 60 meV/Å

25 meV/Å

25 meV/Å

Threshold updated 
using the stored 

Bayesian errors1,2

Wall clock 
time

~0.5 days 

~0.5 days 

~10 days 

→ Transitions already sampled during first two steps? 

19

1 Jinnouchi, R.; Karsai, F.; Kresse, G. (2019) Phys. Rev. B 100, 014105
2 Jinnouchi, R.; Miwa, K.; Karsai, F.; Kresse, G.; Asahi, R. (2020) J Phys. Chem. Lett. 11, 6946

III. REDUCING AMS COMPUTATIONAL COST WITH MACHINE LEARNING 
FORCE FIELD
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Write inputs files and launch VASP

Read the reaction coordinate evolution 
and identify the replica to kill

Generates the new inputs to replace 
the killed replica and launch the VASP 

calculation

All replicas are in P 
?

yes

no

Stop

Unbiased AIMD calculation for all 
replicas until it reached R or P

Unbiased AIMD calculation for all 
replicas until it reached R or P

Blue boxes: python code

Red boxes: VASP code1,2

Write inputs files and launch VASP

Read the reaction coordinate evolution 
and identify the initial conditions

Write the initial condition on Σ𝑅 into a 
separate directory

Time limit reached 
?

yes

no

Stop

Unbiased AIMD calculation for all 
replicas until went to Σ𝑅 and back to R 

a certain number of times

Sampling of initial conditions
Probability estimation with AMS

I. ADAPTIVE MULTI-LEVEL SPLITTING METHOD FOR REACTION RATES 
2
0

1Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558–561.
2Kresse, G.; Joubert, D Phys. Rev. B 1999, 59, 1758–1775.
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Write inputs files and launch VASP

Read the reaction coordinate evolution 
and identify the replica to kill

Generates the new inputs to replace 
the killed replica and launch the VASP 

calculation

All replicas are in P 
?

yes

no

Stop

Unbiased AIMD calculation for all 
replicas until it reached R or P

Unbiased AIMD calculation for all 
replicas until it reached R or P

Blue boxes: python code

Green boxes: VASP active learning

AMS IMPLEMENTATION WITH VASP (PLANE WAVE DFT)

Write inputs files and launch VASP

Read the reaction coordinate evolution 
and identify the initial conditions

Write the initial condition on Σ𝑅 into a 
separate directory

Time limit reached 
?

yes

no

Stop

Unbiased AIMD calculation for all 
replicas until went to Σ and back to R a 

certain number of times

Sampling of initial conditions
Probability estimation with AMS

III. USING AMS WITH ACTIVE LEARNING
21

ACTIVE LEARNING calculation for all 
replicas until went to Σ𝑅 and back to R 

a certain number of times

ACTIVE LEARNING calculation for all 
replicas until it reached R or P

ACTIVE LEARNING calculation for all 
replicas until it reached R or P

1 Jinnouchi, R.; Karsai, F.; Kresse, G. Phys. Rev. B 2019, 100, 014105.
2 Jinnouchi, R.; Miwa, K.; Karsai, F.; Kresse, G.; Asahi, R. The Journal of Physical Chemistry Letters 2020, 11, 6946–6955.
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