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Modelled system
Chemical or biological systems are described as classical systems of N atoms with:

Positions: q ∈ Ω where Ω = R3N or
(
T3)N

Momenta: p ∈ R3N

Hamiltonian: H(q, p) = 1
2 pT M−1p + V (q)

Evolution in time is modelled by underdamped Langevin dynamics (friction γ > 0)
dqt = M−1ptdt

dpt = −∇V (qt)dt − γptdt +

√
2γ

β
M 1

2 dWt .
(1)

such that positions and momenta are distributed according to Boltzmann–Gibbs measure:

ρ(dq, dp) = 1
Q e−βH(q,p)dqdp. (2)

The generator of this dynamics writes:

Lund = −∇qV (q) · ∇p + M−1p · ∇q − γp · ∇p + γ

β
M : ∇2

p. (3)
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Modelled system

We can also consider the overdamped limit of the dynamics (1)
(γ → +∞ / M = mId, m → 0) :

dqt = −∇V (qt)dt +

√
2
β

dWt. (4)

It is not adequate to describe the dynamics of most systems but its generator has a simpler expression
than the one of underdamped dynamics:

Lovd = −∇V · ∇ + 1
β

∆. (5)
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Committor function

Chemical or biological processes are a succession of rare reactive A → B events,
where A, B ⊂ Ω × R3N such that A ∩ B = ∅.

Most of the methodologies aiming at characterizing such reactive events require an importance function
and for most of them the optimal one is the committor function:

pA→B(q, p) = Pq,p [τB < τA] . (6)

with τX the first hitting time of the subset X .

Eventhough the overdamped dynamics is not adequate to describe dynamical behavior of the system,
the associated committor function is already a good collective variable.
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Approximating committor function

The committor function being a high dimensional function, neural networks could be an efficient way of
approximating it.

It boils down to identifying a minimization problem and the way to numerically solve it.
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Point-wise approximations and regression
Given the definition:

pA→B(q) = Pq [τB < τA] , (7)

select M configuration qi

for each qi , run L trajectories until either A or B is reached
build the Monte-Carlo estimator p̃A→B(qi) for each q
minimize 1

M
∑M

i=1
(
f (qi) − p̃A→B(qi)

)2

→ High variance of Monte-Carlo estimator when pA→B is close to 0 or 1, not efficient if the reaction is
rare.

A similar approach is possible using transition path sampling (TPS) as this MCMC procedure requires
to run two dynamics starting from a given point, then the committor can be estimated using negative
log-likelyhood loss.1.
→ Need initial path, still have the high variance close to A and B.

1Jung et al. [2023]
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Point-wise approximations and regression

Given an ensemble of "re-weighted" trajectories:2

define some collective variables (CVs) in small dimension so that you can define a grid on it
in each bins of the grid, count the number of trajectories going first in B
build the weighted estimator p̃A→B(qc) for each bin centers qc

minimize
∑Nbins

c=1 (f (qc) − p̃A→B(qc))2

→ Variance problem addressed by the re-weighting scheme
→ Need to define some some CVs that can parameterize the committor
→ Need to have CVs to run enhanced sampling methods to obtain the re-weighted path ensemble
→ Potential iterative approach scheme possible to address this problem

2Lopes and Lelièvre [2019]
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PDE residuals

The committor function verifies the PDE:

∀q ∈ Ω\(A ∪ B), LovdpA→B(q) = 0,

∀q ∈ A, pA→B(q) = 0, ∀q ∈ B, pA→B(q) = 1,
(8)

with A = A ∪ ∂A, B = A ∪ ∂B and:

Lovd = −∇V · ∇ + 1
β

∆.

Following the PINN approach,3 the committor can be approximated by considering the minimization
problem:

arginf
f

{∫
Ω\(A∪B)

|Lovdf (q)|2 µ(dq)

∣∣∣∣∣ f (q) = 0, q ∈ A, f (q) = 1, q ∈ B
}

. (9)

3Raissi et al. [2017]
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PDE residuals

arginf
f

{∫
Ω\(A∪B)

|Lovdf (q)|2 µ(dq)

∣∣∣∣∣ f (q) = 0, q ∈ A, f (q) = 1, q ∈ B
}

.

There are two ways to address the boundary conditions problem.4

functional form : f (q) = 1̃(A∪B)c (q)pθ(q) + 1̃A∪B(q)1̃B(q) where 1̃X is the continuous function
infinitely close to the indicator function of state X .5

penalization term : α
(∫

A (f (q))2 dq +
∫

B (f (q) − 1)2 dq
)

where α → +∞.

→ µ can be an arbitrary distribution as far as it has full support on Ω\(A ∪ B)
→ Need to compute 2nd order derivatives with respect to input

4Barschkis [2023]
5Li et al. [2019]
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PDE variational formulation

The committor is the solution of the minimization problem:

arginf
f

{∫
Ω\(A∪B)

|∇f (q)|2 e−βV (q) dq

∣∣∣∣∣ f (q) = 0, q ∈ A, f (q) = 1, q ∈ B.

}
, (10)

as the critical points of this functional satisfy the PDE (8).6

→ Need a sample of Boltzmann-Gibbs measure restricted to Ω\(A ∪ B)
→ Iterative enhanced-sampling and training procedure can address this problem7

6Khoo et al. [2018], Li et al. [2019]
7Rotskoff and Vanden-Eijnden [2020], Rotskoff et al. [2022], Yuan et al. [2023], Kang et al. [2024], Wang et al. [2025]
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Fixed point reformulation
Given τ := min(τA, τB), the committor is a fixed point of the operator8

(Pt f ) (q0) = Eq0 [f (qt∧τ )]

so that:
∀t ⩾ 0, ∀q ∈ Ω\(A ∪ B), pA→B(q) = (PtpA→B)(q). (11)

We also introduce the notation:

(Pt f ) (q0) =Eq0 [f (qt) 1t<τ ] + Eq0 [f (qτ ) 1t⩾τ ]
=
(
P i

t f
)

(q0) +
(
Pb

t f
)

(q0),
(12)

so that we can write:

∀t > 0, ∀q ∈ Ω\(A ∪ B),
(
Id − P i

t
)

pA→B(q) −
(
Pb

t 1B
)

(q) = 0, (13)

and pA→B is the only solution of:
f = P i

t f + Pb
t 1B (14)

8Li et al. [2022]
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Fixed point residuals
The committor is the solution to the minimization problem:9

arginf
f

{∫
Ω\(A∪B)

[(
Id − P i

t
)

f (q) −
(
Pb

t 1B
)

(q)
]2

µ(dq)
}

. (15)

With:
φ(q0, qt) = f (q0) − f (qt)1t<τ − 1P(qt)1t⩾τ ,

so that: (
Id − P i

t
)

f (q) −
(
Pb

t 1B
)

(q) = E [φ(q0, qt)] .

(15) rewrites:
arginf

f

{
Eµ

[
E [φ(q0, qt)]

2
]}

,

→ µ can be arbitrary as far as it has full support on Ω\(A ∪ B)
→ The boundary conditions are directly included in the problem

9Strahan et al. [2023]
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Fixed point residuals

Assuming we can draw independently n configuration qi
0 from µ and for each of them we run

independently two dynamics:

lim
n→+∞

1
n

n∑
i=1

φ(qi
0, qi,1

t )φ(qi
0, qi,2

t ) = Eµ
[
E [φ(q0, qt)|q0 = q]2

]
.

→ At least two trajectories must be used to estimate the loss numerically
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Fixed point residuals

As the committor function can be extremely close to 0 (resp. 1) in the vicinity of A (reps. B), it was
proposed to apply the log to (14):10

arginf
f

{∫
Ω\(A∪B)

[
ln (f (q)) − ln

(
P i

t f (q) + Pb
t 1B(q)

)]2
µ(dq)

}
. (16)

Due to Jensen’s inequality, the empirical estimator of this functional is biased but the authors argues
that this has a minor effect and the benefit of using the log is stronger.

10Mitchell and Rotskoff [2024]
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Fixed point variational formulation

The committor function is the solution to the minimization problem:11

arginf
f

{∫
Ω\(A∪B)

f (q)
[(

Id − P i
t
)

f (q) − 2Pb
t 1B(q)

]
e−βV (q) dq

}
. (17)

The same approach was used in12 but reformulating this as:

arginf
f

{∫
Ω

(
Pt f (q)2 − 2f (q)Pt f (q) + f (q)

)
e−βV (q) dq

∣∣∣∣∣ f (q) = 0, q ∈ A, f (q) = 1, q ∈ B
}

. (18)

11Li et al. [2019]
12Roux [2021], He et al. [2022], Roux [2022], Chen et al. [2023]
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Summary of existing methods

Estimation and regression methods:
→ Need enhanced sampling to get accurate estimations close to A and B

Other approaches:

PDE Fixed point
Lovd Pt

Residuals 1, 2 1, 3, 4
Variationnal 5, 6 5, 6

→ 1. Any measure µ with full support on Ω\(A ∪ B)
→ 2. Need to compute second order derivatives
→ 3. Need multiple trajectories for each configurations in the sample of µ
→ 4. Can use ln function to improve the accuracy close to A and B
→ 5. Need sample of Boltman-Gibbs measure resticted to Ω\(A ∪ B)
→ 6. Limited to overdamped dynamics
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Function of the scaled and shifted committor
Let’s consider h ∈ C2(I), where I is an interval of R and two reals numbers (a, b) such that
(min(a + b, b), max(a + b, b)) ⊂ I,

Lovdh(a pA→B(q) + b)

= − ∇V (q) · ∇ [h(a pA→B(q) + b)] + 1
β

∆ [h(a pA→B(q) + b)]

= − a h′(a pA→B(q) + b)∇V (q) · ∇pA→B(q)

+ 1
β

∇ · [a h′(a pA→B(q) + b)∇pA→B(q)]

= − a h′(a pA→B(q) + b)LovdpA→B(q) + a2

β
h′′ (a pA→B(q) + b) |∇pA→B(q)|2 ,

Given the backward Kolmogorov equation (8), we finally obtain:

Lovdh(a pA→B(q) + b) = a2

β
h′′ (a pA→B(q) + b) |∇pA→B(q)|2 . (19)
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Itō’s lemma
The Itō’s formula leads to:

dh (a pA→B(qt) + b) =a2

β
h′′ (a pA→B(qt) + b) |∇pA→B(qt)|

2 dt

+

√
2
β

a h′(a pA→B(qt) + b)∇pA→B(qt) · dWt .

By integrating until time t ∧ τ , for any q0 ∈ Ω\(R ∪ P), we then obtain:

h(a pA→B(qt) + b)1t<τ + h(a 1B(qτ ) + b)1t⩾τ − h(a pA→B(q0) + b)

=a2

β

∫ t∧τ

0
h′′(a pA→B(qs) + b) |∇pA→B(qs)|

2 ds

+ a

√
2
β

∫ t∧τ

0
h′(a pA→B(qs) + b)∇pA→B(qs) · dWs .
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Alternative loss

New objective:

arginf
f

∫
Ω\(A∪B)

(
h(a f (qt) + b)1t<τ + h(a 1B(qτ ) + b)1t⩾τ − h(a f (q0) + b)

− a2

β

∫ t∧τ

0
h′′(a f (qs) + b) |∇f (qs)|

2 ds

− a

√
2
β

∫ t∧τ

0
h′(a f (qs) + b)∇f (qs) · dWs

)2

µ(dq0),

(20)
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Extension to biased dynamics

Let’s consider the biased dynamics:

dqt = −∇q(V − U)(qt)dt +

√
2
β

dWt . (21)

The corresponding infinitesimal generator writes:

LU = −∇q(V − U) · ∇q + 1
β

∆q = Lovd + ∇qU · ∇q, (22)

so that its action on a function of the scaled and shifted committor function writes:

LUh(a pA→B(q) + b) = Lovd h(a pA→B(q) + b)
+ ah′ (a pA→B(q) + b) ∇pA→B(q) · ∇U(q).

(23)
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Extension to biased dynamics
Applying Itō’s formula considering the stochastic process (21), we obtain:

d [h (a pA→B(qt) + b)] = a2

β
h′′ (a pA→B(qt) + b) |∇pA→B(qt)|

2 dt

+ a h′(a pA→B(qt) + b)∇pA→B(qt) ·

(√
2
β

dWt + ∇U(qt)dt
)

,

(24)

which lead to the minimization problem:

arginf
f

∫
Ω\(A∪B)

(
h(a f (qt) + b)1t<τ + h(a 1B(qt) + b)1t⩾τ − h(a f (q0) + b)

− a2

β

∫ t∧τ

0
h′′(a f (qs) + b) |∇f (qs)|

2 ds

− a
∫ t∧τ

0
h′(a f (qs) + b)∇f (qs) · ∇U(qs)ds

− a

√
2
β

∫ t∧τ

0
h′(a f (qs) + b)∇f (qs) · dWs

)2

µ(dq0),

(25)
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Discretized loss

We use the parameterized committor:13

fθ(q) = 1̃(R∪P)c (q)pθ(q) + 1̃R∪P(q)1̃P(q), (26)

where pθ is the (smooth) NN and 1̃ are smooth indicator functions that are non zero extremely close to
the set.

Consider the Euler-Maruyama integration scheme:

qℓ+1 = qℓ − ∇(V − U)(qℓ)∆t +

√
2∆t

β
Gℓ+1. (27)

13Li et al. [2019]
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Discretized loss

Then we draw K configurations from the measure µ and for each of them integrate the dynamics
independently for L integration time steps ∆t.

We define lk as the smallest integer such that qk,lk ∈ A ∪ B,
using the notation Tk = L ∧ lk the discretized loss writes:

1
K

K∑
k=1

(
h(a fθ(qk,Tk ) + b) − h(a fθ(qk,0) + b)

− a2∆t
β

Tk∑
ℓ=1

h′′(a fθ(qk,ℓ) + b)|∇fθ(qk,ℓ)|2

− a
Tk∑

ℓ=1
h′(a fθ(qk,ℓ) + b)∇fθ(qk,ℓ) ·

(√
2∆t

β
Gk,ℓ+1 + ∇U(qk,ℓ)∆t

))2

.

(28)
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Choice of function h

1
K

K∑
k=1

(
h(a fθ(qk,Tk ) + b) − h(a fθ(qk,0) + b)

− a2∆t
β

Tk∑
ℓ=1

h′′(a fθ(qk,ℓ) + b)|∇fθ(qk,ℓ)|2

− a
Tk∑

ℓ=1
h′(a fθ(qk,ℓ) + b)∇fθ(qk,ℓ) ·

(√
2∆t

β
Gk,ℓ+1 + ∇U(qk,ℓ)

))2

.

h = Id, then a = 1 and b = 0
h = ln, sum of two losses (28),

▶ 1st with a = 1 and b = ε
▶ 2nd with a = −1 and b = 1 + ε

ε ∈ (0, 1) introduced to prevent numerical issues and to introduce progressively the logarithm function.
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Potential and states definitions
The 2D Müller–Brown potential14 writes:

V (x1, x2) =
4∑

i=1
Ai exp

(
ai (x1 − ui)2 + bi (x1 − ui) (x2 − vi) + ci (x2 − vi)2

)
, (29)

with the parameters A = (−200, −100, −170, 15), a = (−1, −1, −6.5, 0.7), b = (0, 0, 11, 0.6),
c = (−10, −10, −6.5, 0.7), u = (1, 0, −0.5, −1) and v = (0, 0.5, 1.5, 1).

Unbiased overdamped dynamics with β = 0.05 and
∆t = 10−4

A and B are small discs of radii 0.1 centered
respectively at (−0.558, 1.442) and (0.623, 0.028)

14Müller and Brown [1979]
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Neural network training parameters and error metrics

Neural network training:
Fully connected feed-forward NN with 2 hidden layers of 20 neurons with Tanh activation function
and sigmoid output
Adam optimizer with 0.001 fixed learning rate
Training stopped after 50 epochs without decrease of validation loss
1
4 training, 1

4 validation, 1
2 test

Error of the trained model computed against finite element approximation of committor.
RMSE-r: RMSE of committor function computed on a set of points distributed according to
reactive trajectories measure
RMSE-log-b: RMSE of the log of committor computed on a set of points distributed according to
Boltzmann–Gibbs measure
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With Boltzmann–Gibbs distribution

We obtain a sample of Boltzmann–Gibbs measure restricted to Ω\
(
A ∪ B

)
by integrating (27) for

2 × 105 time-steps.
From this trajectory, we build various datasets composed of 3.2 × 104 configurations to
minimize (10), (17), (18) and (28).
The batch size was fixed to 100 for the first 3 cases and fixed to 10 for the loss based on Itō’s formula.

To be able to compare these methods, we initialize 10 NN and each of them is trained until early
stopping 10 times, changing the random number seed for the mini-batching procedure.

We present errors of the model with the lowest test loss.
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With Boltzmann–Gibbs distribution
Dataset of 3.2 104 configurations

Isolevels of a model with:
RMSE-r = 0.025 and RMSE-long-b = 1.62
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With uniform distribution

Dataset of 3.2 105 configurations

Isolevels of a model with:
RMSE-r = 0.018 and RMSE-log-b = 1.65
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Description of the procedure

1 Define states A and B sample initial conditions for AMS15 (exits of A and B) with unbiased MD
2 Cut trajectories in a dataset of sub-trajectories of fixed length L and train a first committor

approximation
3 Run AMS to sample reactive trajectories. Re-weight the trajectories16 and cut them in sub

trajectories of length L
4 Retrain the NN with extended dataset
5 Run AMS again. Measure the impact of extending the dataset, if no impact, stop the procedure,

got back to 3 otherwise

15Cérou and Guyader [2007], Lopes and Lelièvre [2019]
16Bréhier et al. [2015]
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Potential and state definition
Illustration on the Z-potential:17

Unbiased overdamped dynamics with
β = 3 and ∆t = 0.05

A and B are small discs of radii 0.5
centered respectively at (−7.20, −5.10)
and (7.20, 5.10)

Way to measure the impact of increasing the dataset: linear regression between the log of the
approximate committor values before and after extending the dataset.

We use a set of 1000 configurations randomly chosen within the reactive trajectories distribution.
17Frassek et al. [2021]
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Iterative procedure results

First training before AMS with trajectories only near A and B:

Isolevels of the log of the NN committor
approximation

Initial configurations of sub-trajectories in the
traininig dataset
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Iterative procedure results

Second training after first AMS:

Isolevels of the log of the NN committor
approximation

Initial configurations of sub-trajectories in the
traininig dataset
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Iterative procedure results

Third training after second AMS:

Isolevels of the log of the NN committor
approximation

Initial configurations of sub-trajectories in the
traininig dataset
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Iterative procedure results

Final model at the end of the procedure, comparison to finite elements approximation
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Comparison of reaction coordinates

95% confidence interval of the transition probability estimated with 100 forward and backward AMS
runs using various reaction coordinates.

RC ξinterp NN committor FE committor
A → B
p ± 1.96√

10 σp (3.39 ± 6.58) × 10−8 (4.41 ± 1.07) × 10−7 (5.58 ± 1.02) × 10−7

B → A
p ± 1.96√

10 σp (0.89 ± 1.52) × 10−8 (6.57 ± 1.48) × 10−7 (5.09 ± 1.) × 10−7

ξinterp(x , y) = (xB − xA) x + (yB − yA) y
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Conclusion & perspectives

This method allows to define satisfying reaction coordinate for AMS (in the sense of AMS variance)

Extend to underdamped dynamics and real systems.

Thank you!
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Variational loss

arginf
f

{∫
Ω\(A∪B)

|∇f (q)|2 e−βV (q)dq,

∣∣∣∣∣f (q) = 0, q ∈ A, f (q) = 1, q ∈ B.

}
fλ(q) = p∗(q) + λη(q) where p∗ is a critical point of the minimized functional.

0 = 1
2

∂

∂λ

∫
Ω\(A∪B)

|∇fλ(q)|2 e−βV (q) dq

∣∣∣∣∣
λ=0

=
∫

Ω\(A∪B)
∇η(q) · ∇p∗(q)e−βV (q) dq

=
∫

Ω\(A∪B)
∇ ·
(

η(q)∇p∗(q)e−βV (q)
)

dq

−
∫

Ω\(R∪P)
η(q)∇ ·

(
∇p∗(q)e−βV (q)

)
dq.
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Variational PDE loss

Since for all functions η such that ∀q ∈ (∂R ∪ ∂P) , η(q) = 0∫
Ω\(A∪B)

∇ ·
(

η(q)∇p∗(q)e−βV (q)
)

dq =
∫

∂(Ω\(A∪B))
η(q)∇p∗(q)e−βV (q)ds = 0,

We have

0 = −
∫

Ω\(A∪B)
η(q)∇ ·

(
∇p∗(q)e−βV (q)

)
dq.

0 = −
∫

Ω\(A∪B)
η(q) (∆p∗(q − β∇p∗(q) · ∇V (q)) e−βV (q)dq

0 = −
∫

Ω\(A∪B)
η(q)β (Lovdp∗) (q)e−βV (q)dq,
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Fixed point justification

∀q0 ∈ Ω\(A ∪ B),

pA→B(qt)1t<τA∪B
+ 1B(qτA∪B

)1t⩾τA∪B
− pA→B(q0) =

∫ t∧τA∪B

0

√
2
β

∇pA→B(qs) · dWs

Taking the expectation with respect to the law of the process we get:

∀q ∈ Ω\(A ∪ B), (P i − I)pA→B(q) + Pb1B(q) = 0.
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Variational fixed point loss

arginf
f

{
1
2

∫
Ω\(A∪B)

f (q)
(
I − P i) f (q)e−βV (q)dq −

∫
Ω\(A∪B)

f (q)Pb1B(q)e−βV (q)dq
}

fλ(q) = p∗(q) + λη(q),

0 = ∂

∂λ

(
1
2

∫
Ω\(A∪B)

fλ(q)
(
I − P i) fλ(q, λ)e−βV (q)dq

−
∫

Ω\(A∪B)
fλ(q, λ)Pb1B(q)e−βV (q)dq

)∣∣∣∣∣
λ=0

=
∫

Ω\(A∪B)
η(q)

(
I − P i) p∗(q)e−βV (q)dq −

∫
Ω\(R∪P)

η(q)Pb1B(q)e−βV (q)dq

=
∫

Ω\(A∪B)
η(q)

[(
I − P i) p∗(q) − Pb1B(q)

]
e−βV (q)dq.

The second equality holds as P i is self adjoint on L2
µ(Ω\(A ∪ B))18

18Li, Khoo, Ren, Ying, In Proceedings of the 2nd Mathematical and Scientific Machine Learning Conference, Vol. 145,
2022
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