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Chemical or biological systems are described as classical systems of N atoms with:
o Positions: q € Q where Q = R3V or (T3)N
o Momenta: p € R3V
o Hamiltonian: H(q,p) = 2p"M~'p + V(q)

Evolution in time is modelled by underdamped Langevin dynamics (friction v > 0)

dq, = M~ 'p.dt

[2
dp, = —VV(q,)dt — yp,dt + %M%dwt.

such that positions and momenta are distributed according to Boltzmann—Gibbs measure:
1
p(daq, dp) = 56‘5”(°"")dqdp-

The generator of this dynamics writes:
v

Luna =—VqV(a) -V, + M_lp-Vq —wP-Vp+ B

. 72
M: V2.
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We can also consider the overdamped limit of the dynamics (1)
(v = 400/ M=mld,m— 0) :

dq, = —VV(q,)dt + \/gth. (4)

It is not adequate to describe the dynamics of most systems but its generator has a simpler expression
than the one of underdamped dynamics:

1
Lova=—VV Y+ A, (5)
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Chemical or biological processes are a succession of rare reactive A — B events,
where A, B C Q x R3N such that AN B = ().

Most of the methodologies aiming at characterizing such reactive events require an importance function
and for most of them the optimal one is the committor function:

pa—g(q,p) = P4 [1p < 7]. (6)

with 7x the first hitting time of the subset X.

Eventhough the overdamped dynamics is not adequate to describe dynamical behavior of the system,
the associated committor function is already a good collective variable.
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Approximating committor function

The committor function being a high dimensional function, neural networks could be an efficient way of
approximating it.

It boils down to identifying a minimization problem and the way to numerically solve it.
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Point-wise approximations and regression

Given the definition:
pa—g(q) = PY[rs < 7a], (7)

©

select M configuration q'

(4]

for each q', run L trajectories until either A or B is reached

(4]

build the Monte-Carlo estimator pa_.g(q’) for each q

e 1 M i ~ i\ 2
o minimize 4 >, (F(a") — pass(a’))
— High variance of Monte-Carlo estimator when pa_.p is close to 0 or 1, not efficient if the reaction is
rare.

A similar approach is possible using transition path sampling (TPS) as this MCMC procedure requires
to run two dynamics starting from a given point, then the committor can be estimated using negative
log-likelyhood loss.!.

— Need initial path, still have the high variance close to A and B.

YJung et al. [2023]
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Point-wise approximations and regression

Given an ensemble of "re-weighted" trajectories:?

o define some collective variables (CVs) in small dimension so that you can define a grid on it
@ in each bins of the grid, count the number of trajectories going first in B
o build the weighted estimator pa_,5(q°) for each bin centers q°

Nbins

minimize > "1 (f(q°) — Pase(a°))’

(]

— Variance problem addressed by the re-weighting scheme

— Need to define some some CVs that can parameterize the committor

— Need to have CVs to run enhanced sampling methods to obtain the re-weighted path ensemble
— Potential iterative approach scheme possible to address this problem

2Lopes and Lelievre [2019]
ICMS 2025 8/41



The committor function verifies the PDE:

Vg € Q\(AUB), Loapass(q) =0,

_ _ (8)
vq € Aa PA—>B(Q) =0, Vq € Ba pA—>B(q) =1,
with A= AUOA, B=AUOIB and:
1
Lova=-VV- -V+ -A.
5
Following the PINN approach,® the committor can be approximated by considering the minimization
problem:
arginf {/ |Lovaf(@)]> u(dq) | f(q) =0,q€ A, f(q)=1,q¢€ B}. (9)
f Q\(AUB)

3Raissi et al. [2017]
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f(a)=0,q €A, f(q)—l,qu}-

arginf{/ _|Lovaf(@))? p(da)
f Q\(AUB)

There are two ways to address the boundary conditions problem.*
o functional form : f(q) = I(AUB)c(q)pg(q) + 1au8(q)15(q) where 1x is the continuous function
infinitely close to the indicator function of state X.

o penalization term : « (fz(f(q))2 dg + [z (f(q) —1)? dq) where o — +00.

— p can be an arbitrary distribution as far as it has full support on Q\(AU B)
— Need to compute 2™ order derivatives with respect to input

4Barschkis [2023]
5Li et al. [2019]
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PDE variational formulation

The committor is the solution of the minimization problem:

arginf {/ o |Vf(q)|2e_ﬁv(q) dq|f(q)=0,q€ A, f(q)=1,q¢ E.} , (10)
f Q\(AUB)
as the critical points of this functional satisfy the PDE (8).°

— Need a sample of Boltzmann-Gibbs measure restricted to Q\(A U B)
— Iterative enhanced-sampling and training procedure can address this problem?

6Khoo et al. [2018], Li et al. [2019]

"Rotskoff and Vanden-Eijnden [2020], Rotskoff et al. [2022], Yuan et al. [2023], Kang et al. [2024], Wang et al. [2025]
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Given 7 := min(7a, 78), the committor is a fixed point of the operator®

(Pef) (q0) = E* [f (aenr )]

so that: o
Vt>0,Vq € Q\(AUB), pass(a) = (Pipass)(a)

We also introduce the notation:

(Pef) (ap) =E% [f (a,) Le<;] + E* [f (q,) Le>/]
= (Pif) (ao) + (Pff) (o),

so that we can write:
vt >0,Yq€ Q\(AUB), (Id—7P})pass(a) - (P;1s) (a) =0,

and pa_. g is the only solution of: 4
f =P +Pls

8Li et al. [2022]
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The committor is the solution to the minimization problem:®

arginf {/ [ =7 fa) - (P1s) (Q)]2u(dq)}~
f Q\(AUB)
With:

©(ap,9;) = f(ap) — fa,)Lecr — 1P(Qt)1t>n
so that: _

(Id —P}) f(a) — (P21g) (a) = E[¢(ao,a,)] -
(15) rewrites:

. 2
argfmf {Eu {E [¢(do a;)] } } 7

— u can be arbitrary as far as it has full support on Q\(AU B)
— The boundary conditions are directly included in the problem

9Strahan et al. [2023]
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Fixed point residuals

Assuming we can draw independently n configuration qy from 1 and for each of them we run
independently two dynamics:

1 Pl P2 2

lim —>" p(ab, 4t )e(ab, ai*) = E* [E [¢(ao,a,)lao = al’].

n——+oco n
i=1

— At least two trajectories must be used to estimate the loss numerically

Thomas Pigeon (IFPEN) ICMS 2025 14 /41



As the committor function can be extremely close to 0 (resp. 1) in the vicinity of A (reps. B), it was
proposed to apply the log to (14):10

arginf {/ ~_ [In(f(a)) = In (Pif(a) + ?Fls(q))]2 H(dQ)} . (16)
Q\(AUB)

f

Due to Jensen's inequality, the empirical estimator of this functional is biased but the authors argues
that this has a minor effect and the benefit of using the log is stronger.

10Mitchell and Rotskoff [2024]
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The committor function is the solution to the minimization problem:1!

arginf {/ __ f(q) [(1d - P}) f(q) — 2PP1g(q)] e V@ dq}. (17)
f Q\(AUB)

The same approach was used in'?2 but reformulating this as:

argfinf{ /Q (Pef()? — 2f(Q)P:f(q) + F(q)) e V@ dq|f(q) =0,q€ A, f(a)=1,q¢€ B}. (18)

HLi et al. [2019]
12Roux [2021], He et al. [2022], Roux [2022], Chen et al. [2023]
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Summary of existing methods

Estimation and regression methods:

— Need enhanced sampling to get accurate estimations close to A and B

Other approaches:

PDE | Fixed point

£ovd Pt
Residuals 1,2 1,3, 4
Variationnal | 5, 6 5,6

— 1. Any measure z with full support on Q\(AU B)

— 2. Need to compute second order derivatives

— 3. Need multiple trajectories for each configurations in the sample of u
— 4. Can use In function to improve the accuracy close to A and B
— 5. Need sample of Boltman-Gibbs measure resticted to Q\(AU B)

— 6. Limited to overdamped dynamics

Thomas Pigeon (IFPEN)
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Let's consider h € C3(/), where [ is an interval of R and two reals numbers (a, b) such that
(min(a + b, b), max(a + b, b)) C /,

Eovdh(a pA—>B(q) + b)
— —VV(a) V[h(a pacss(@) +b)] + %A [h(a pacsa(@) + )]
=—a h'(a pass(a) +b)VV(a) - Vpass(a)

+ %v [a W'(a passs(q) +b)Vpas(q)]

2
/ a /
=—a h'(a pas58(a) + b)Lovapa—s(a) + Eh/ (a pas(a) +b)|Vpass(a)l’,

Given the backward Kolmogorov equation (8), we finally obtain:

a2

3 W' (a pa-se() +b)|Vpas(a)”. (19)

Lovah(a pass(q) +b)
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The Ito's formula leads to:

2
a !
dh(a pass(g,) +b) :Eh/ (a pa—g(9;) +b) ‘VPA—>B(qt)|2dt

2
+ \/;a h'(a pa-s(a;) +b)Vpass(a,) - dWe.

By integrating until time t A 7, for any q, € Q\(R U P), we then obtain:
h(a pa-s(a) +b)lecr + h(a 1p(q,) + b)lesr — h(a pass(dg) +b)

3:2 tAT 5
-5 / H'(a pacss(a.) +b) [Vpass(a,)? ds
0

2 tAT
i a\/;/ h(a pa—s(ds) +b)Vpass(a,) - AWs.
0

ICMS 2025
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Alternative loss

New objective:

arginf | (h(a (@) + b)Lecr + h(a 16(a,) +b)Lesr — h(a F(ao) + D)
f  JQ\(AUB)

32 tAT

- = h'(a f(a,) +b)|VF(a,)|* ds (20)

—a\[ / H(a f(a,) + b)VF(a,) - dw> i(da).

Thomas Pigeon (IFPEN) ICMS 2025 21/41



Let's consider the biased dynamics:

dq, = —Vg(V — U)(a,)dt + \/gdwt-

The corresponding infinitesimal generator writes:
1
g

so that its action on a function of the scaled and shifted committor function writes:

Ly=-Vg(V—-U) Vg+ 8¢ =Lova+VqU-Vyg,

Luyh(a passe(q) +b) = Lova h(a pase(q) + D)
+ah’ (a pa—s(a) +b) Vpass(a) - VU(a).

ICMS 2025
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Applying Itd's formula considering the stochastic process (21), we obtain:

2
d[h(a pass(a,) + b)) = %h” (a passe(@y) + b) [Vpasse(ay)? dt

(24)
2
+a h(a pass(d.) +b)Vpass(de) - (\/;dwt + VU(Qt)dT> )
which lead to the minimization problem:
argint / - (h(a F(ae) + b)Lecr + h(a15(a,) + b)lesr — h(aF(ag) + )
f Q\(AUB)
a2 tAT )
- h'(af(as) +b) [VF(a,)l"ds

y (25)

o [ W) £ D@ TUa)is

0
tAT 2
—a %/O h’(af(qs)+b)Vf(qs)'dWs> 1(ddg),

ICMS 2025 23 /41



We use the parameterized committor:13

fa(a) = Lrury-(a)pa(a) + 1rup(a)lp(a), (26)

where py is the (smooth) NN and 1 are smooth indicator functions that are non zero extremely close to
the set.

Consider the Euler-Maruyama integration scheme:

2At
qZ+1 _ qf _ V(V _ U)(qi)At + TGLH-' (27)

131 et al. [2019]
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Then we draw K configurations from the measure i and for each of them integrate the dynamics

independently for L integration time steps At.

We define I as the smallest integer such that qk”k € AUB,
using the notation T, = L A Ix the discretized loss writes:

K

;Z(h(a f(q° ) +b) — h(a f(q*°) + b)

2At
Zh// ké +b)‘vfe( ké)l

i 2
2Nt
—ay H(af(a") +b)Vh(a")- (V 7Gk’”1 + VU(q”)At> ) :
(=1

ICMS 2025
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K
% > (h(a fo(@* ") +b) — h(a f(q*°) + D)
k=1

2At
Zh// kﬁ —‘rb)|Vf9( k/)|

Tk 2
0 e hla ) + bV A (ﬁc Fvu) ).
=1

o h=1d,thena=1and b=0
@ h=n, sum of two losses (28),
1" witha=1and b=¢
2% witha=—-landb=1+¢

€ (0, 1) introduced to prevent numerical issues and to introduce progressively the logarithm function.
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Potential and states definitions
The 2D Miiller-Brown potential'* writes:

4
V(x1,x) = ZA,- exp (a,- (a — u,-)2 +bi(x1—u)e—vi)+ ¢ — v,-)2> , (29)
i=1
with the parameters A = (—200,—-100,—-170,15), a=(-1,-1,-6.5,0.7), b = (0,0,11,0.6),
¢ = (~10,-10,-6.5,0.7), u = (1,0,—0.5,—1) and v = (0,0.5,1.5,1).

—— Minimum energy path

—10 Unbiased overdamped dynamics with 5 = 0.05 and
60 At =10"*

= -80 f
00 A and B are small discs of radii 0.1 centered

respectively at (—0.558,1.442) and (0.623,0.028)

—15 -1.0 —0.5 0.0 0.5 1.0

Thomas Pigeon (IFPEN) ICMS 2025
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Neural network training:
o Fully connected feed-forward NN with 2 hidden layers of 20 neurons with Tanh activation function
and sigmoid output
o Adam optimizer with 0.001 fixed learning rate
@ Training stopped after 50 epochs without decrease of validation loss

1 .. 1 . . 1
@ ; training, 7 validation, 5 test

Error of the trained model computed against finite element approximation of committor.
o RMSE-r: RMSE of committor function computed on a set of points distributed according to
reactive trajectories measure
o RMSE-log-b: RMSE of the log of committor computed on a set of points distributed according to
Boltzmann—Gibbs measure
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We obtain a sample of Boltzmann—Gibbs measure restricted to Q\ (ZU E) by integrating (27) for

2 x 10° time-steps.

From this trajectory, we build various datasets composed of 3.2 x 10* configurations to

minimize (10), (17), (18) and (28).

The batch size was fixed to 100 for the first 3 cases and fixed to 10 for the loss based on Itd’s formula.

To be able to compare these methods, we initialize 10 NN and each of them is trained until early
stopping 10 times, changing the random number seed for the mini-batching procedure.

We present errors of the model with the lowest test loss.
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With Boltzmann—Gibbs distribution
Dataset of 3.2 10* configurations

=== (10) : Variational PDE approach
*
s & (17) Variationnal fixed point Li et al.
o . ® (18) Variationnal fixed point Roux et al.
* N P (28), Itd's formula residuals with /t =Id
006
& . " A [28), Itd's formula residuals with k =In, = = 10!
QD oos -
z o (28), Itd's formula residuals with h =In, £ = 102
001 N 4 ‘: .
0.03 “
® .
. A Isolevels of a model with:
T RMSE-r = 0.025 and RMSE-long-b = 1.62
099 20 10
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300 A
N 0.500 1| 038
275 * " > L] .
P . g 3 g
b > 30,6001 0.67g
[ » El ~ @
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With uniform distribution

Dataset of 3.2 10° configurations

0.045 >
000 .
> p  (28), Itd's formula residuals with b =Id
- > .
00 « (28), |td's formula residuals with h =In, = = 102
000
w
]
2 von >
- Isolevels of a model with:
N RMSE-r = 0.018 and RMSE-log-b = 1.65
0.010 « “ -
0.999 1 1.0
o 50 100 130 200 20 300
time lagg t L
0.800 1 0.8
575 S - H <
5 F3 K
330 £ 0.600 1+ 0678
> - H 2
325 > 8 :
2 300 > £ 0.400 047F
2 ® g
0o N 5
]
= om0 > 0.200 0.2
o
225
-«
0.001 - 0.0
200 - «
175 «
o 50 100 150 200 250 300
time lagg t
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O Define states A and B sample initial conditions for AMSS (exits of A and B) with unbiased MD

Q Cut trajectories in a dataset of sub-trajectories of fixed length L and train a first committor
approximation

@ Run AMS to sample reactive trajectories. Re-weight the trajectories!® and cut them in sub
trajectories of length L

@ Retrain the NN with extended dataset

@ Run AMS again. Measure the impact of extending the dataset, if no impact, stop the procedure,
got back to 3 otherwise

15Cérou and Guyader [2007], Lopes and Leliévre [2019]
16Bréhier et al. [2015]
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Potential and state definition

lllustration on the Z-potential:”

— Minimum energy path

Unbiased overdamped dynamics with
8 =3 and At = 0.05

. A and B are small discs of radii 0.5
o centered respectively at (—7.20,—5.10)
R and (7.20,5.10)

Way to measure the impact of increasing the dataset: linear regression between the log of the
approximate committor values before and after extending the dataset.

We use a set of 1000 configurations randomly chosen within the reactive trajectories distribution.

Frassek et al. [2021]
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Iterative procedure results

First training before AMS with trajectories only near A and B:

15

-15

Isolevels of the log of the NN committor
approximation

Thomas Pigeon (IFPEN)

T T T T T T T T

0.0

r—0.4

-0.8
-12
-16
-2.0
-2.4
-2.8
-3.2

-3.6

-20 -15 -10 -5 0 5 10 15 20

Initial configurations of sub-trajectories in the
traininig dataset
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Iterative procedure results

Second training after first AMS:

15

—— Minimum energy path

10

r 0.00

r—0.32
-0.64
—0.96
-1.28
—1.60
-1.92
-2.24
—2.56

—2.88

Isolevels of the log of the NN committor
approximation
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—— Minimum energy path

Initial configurations of sub-trajectories in the
traininig dataset

=15

-10

-5

0

5

10 15
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Iterative procedure results

Third training after second AMS:

15

—— Minimum energy path

"Rl

=20 -10 0 10 20

Isolevels of the log of the NN committor
approximation

Thomas Pigeon (IFPEN)

—— Minimum energy path

—éO —I15 —Il() —‘5 6 é 1‘0 15 20
Initial configurations of sub-trajectories in the
traininig dataset
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Iterative procedure results

Final model at the end of the procedure, comparison to finite elements approximation

-1

24

—4 4

-5+

—6

74

15

10

Thomas Pigeon (IFPEN)

-1
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95% confidence interval of the transition probability estimated with 100 forward and backward AMS
runs using various reaction coordinates.

RC ‘ Einterp ‘ NN committor ‘ FE committor
A—B

pt 2oy | (3.39+6.58) x 107° | (4.41+1.07) x 1077 | (5.58 +1.02) x 1077
B— A

pE 2oy | (0.89£1.52)x107° | (6.57+£1.48) x 107" | (5.09+1.) x 107"

ginterp(xay) = (XB - XA) X + (.yB - }/A) y

ICMS 2025 40/41



Conclusion & perspectives

This method allows to define satisfying reaction coordinate for AMS (in the sense of AMS variance)

Extend to underdamped dynamics and real systems.

Thank you!
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arginf {/ IVF(q) e ?V@dq, |f(q) =0,qc A, f(q)=1,q¢ B.}
f Q\(AUB)

fr(q) = p*(a) + An(q) where p* is a critical point of the minimized functional.

1 8 / 2 VvV
0= -+ VA(a)]? e ?V@ dq
20X Q\(AUB) VAl

[ V@) Ve (@) W dg
Q\(AUB)

A=0

= [ v (w@)Ve (@ @) da
Q\(AUB)

[ @V (Ve @e ) da
Q\(RUP)
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Since for all functions 1 such that Vq € (ORUJP),n(q) =0

[ v (a@ve@e @) da= [ y(@Tae s o
Q\(AuB) A(Q\(AUB))

We have

0=- /  n(@)V- (Ve (@)e ) da.
Q\(AUB)

0= */ __ (@) (Ap*(a - BVp*(a)- VV(a) e "V Wdq
Q\(AUB)

0=- / 0B (Lovap®) ()o@ dq,
Q\(AUB)
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Fixed point justification

qu € Q\(Z U E)»

Pa-B(Ae)Li<ry 5 + 15(ar )l 5 — PasB(do) = / \/7VPA—>B (as)

Taking the expectation with respect to the law of the process we get:

vq € Q\(AU B), (P’ — I)pa_s(q) + P°15(q) = 0.

Thomas Pigeon (IFPEN) ICMS 2025 44 /41



1 .
arginf{2/ __fa)(1-P") f(q)e?V@dq _/ o f(q)PbIB(q)e_BV(q)dq}
f Q\(AUB) Q\(AUB)

Ha) = p*(q) + An(q),
_9 (1 —pi —BV(a)
0= __ fi(aq) (/ P ) fr(a, Ne dq
oA\ 2 Ja\(auB)
[ fx(q,A)P%B(q)e—ﬁWq)dq)
Q\(AUB) o

:/ __ (@) (1 =P") p*(a)e " Vdq —/ n(@)P*15(a)e "V dq
Q\(AUB) \(RUP)

- /Q\(AuB) n(a) [(/ = P') p*(a) — P*15(a)] e 7V Vdq.

The second equality holds as P’ is self adjoint on L2 (Q\(AU B))*®
181 i, Khoo, Ren, Ying, In Proceedings of the 2nd Mathematical and Scientific Machine Learning Conference, Vol. 145,
2022
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