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INTRODUCTION: REACTION MECHANISMS

Targets : compute reaction rates

identify reaction mechanism

Different methods exist:

• Transition State Theory (TST): for instance, Eyring-Polanyi equation1 𝒌ℎ𝑇𝑆𝑇 =
𝑘B𝑇

ℎ
𝑒
−
Δ𝐺‡
𝑘B𝑇

Using free energy computed by static approach within harmonic approximation or Molecular Dynamics (MD) 
• Alternatively: MD and Rare events simulation methods to access directly the reaction time 

Hill relation2: 𝒌𝐻𝑖𝑙𝑙 = 𝑝𝑅 →𝑃𝜙𝑅

R
P

Free Energy

I

TS1 TS2

Reaction coordinate

1 Eyring, H. (1935). The activated complex in chemical reactions. The Journal of Chemical Physics, 3(2), 107-115.
2 Hill, T. (2012) Free energy transduction in biology: The steady-state kinetic and thermodynamic formalism. Elsevier Science and Technology Books
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INTRODUCTION: STANDARD MOLECULAR DYNAMICS

Simulates the dynamic of the system by adding a thermostat to newton equations of motion 

ex. Langevin formalism1

Not efficient for the simulation of rare events due to high energy barriers and entropic bottlenecks

Time scales: integration time step : ~ 10−15𝑠 rare event rate ~ 10−9𝑠−1 to 103𝑠−1

൝
𝑑𝑞𝑡 = 𝑀−1𝑝𝑡𝑑𝑡

𝑑𝑝𝑡 = −𝛻𝑉 𝑞𝑡 𝑑𝑡 − 𝛾𝑝𝑡𝑑𝑡 + 2𝛾𝑀𝑘𝐵𝑇𝑑𝑊𝑡

Dissipate energy Provides energyPreserves energy
Newton equation Langevin part

1 Langevin P. (1908), Comptes-Rendus de l'Académie des Sciences, 146, 530-532
2 Laio, A., & Parrinello, M. (2002) Proceedings of the National Academy of Sciences, 99(20), 12562-12566.
3 Carter, E. A., Ciccotti, G., Hynes, J. T., & Kapral, R. (1989). Chemical Physics Letters, 156(5), 472-477.
4 Cérou, F., & Guyader, A. (2007) Stochastic Analysis and Applications, 25(2), 417-443.

NVE ensemble NVT ensemble

MD based approaches to overcome barriers: 
- TST → biased MD such as Metadynamics2, Blue-Moon sampling3 … 

Dynamics is lost but rates are estimated from free energy
- Hill → rare events sampling methods such as Adaptive multi-level splitting4

Dynamics preserved thus the rates can directly be computed

3
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OUTLINE

I. Adaptive Multi-level Splitting (AMS) for reaction rates

II. Identifying reaction coordinate with Machine Learning (ML)

III. Results of the AMS + ML method. 

CASE STUDY: Kinetics of dissociation of H2O on γ-Al2O3 (100) surface

4
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Transition State Theory

1 Hänggi, P. Talkner, P. Borkovec, M. (1990) Reaction-rate theory: fifty years after Kramers Reviews of Modern Physics , Vol. 62, No. 2 American Physical Society (APS) p. 251-341
2 Hill, T. (2012) Free energy transduction in biology: The steady-state kinetic and thermodynamic formalism. Elsevier Science and Technology Books

I. ADAPTIVE MULTI-LEVEL SPLITTING METHOD FOR REACTION RATES 

Hill relation

TS surface

𝒌𝑇𝑆𝑇 = 𝑝 𝑇𝑆 𝑅) 𝜙𝑇𝑆 →𝑃

Product zone PReactant zone R
Product zone PReactant zone R

𝒌𝐻𝑖𝑙𝑙 = 𝑝𝑅 →𝑃(𝜕𝑅) 𝜙𝑅

Rate = probability of being in TS with respect to R 
× frequency of decomposition to P

Rate = probability of reaching P before R 
starting from 𝜕𝑅 × frequency of exits of R

𝒌ℎ𝑇𝑆𝑇 = 𝑒
−
Δ𝐺‡
𝑘B𝑇

𝑘B𝑇

ℎ

Not extremely sensitive to the
definition of R and P

Sensitive to the TS definition
TST overestimates rates (𝜅)

2-dimensional potential 

hTST poorly captures entropy  

5
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What is a Multilevel Splitting estimator:

𝑝𝑅→Σ1(Σ𝑅)𝑝𝑅→Σ2(Σ1)𝑝𝑅→Σ3(Σ2)𝑝𝑅→Σ4(Σ3)𝑝𝑅→Σ5(Σ4)𝑝𝑅→Σ6(Σ5)𝑝𝑅→Σ7(Σ6)𝑝𝑅→𝑃(Σ7)
= 𝑝𝑅→𝑃 (Σ𝑅)

How to place Σ𝑖 and compute 𝑝R→Σ𝑖+1(Σ𝑖) ?

I. ADAPTIVE MULTI-LEVEL SPLITTING METHOD FOR REACTION RATES 

R P

Σ𝑅

Σ1 Σ2 Σ3 Σ4 Σ5 Σ6 Σ7

6
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I. ADAPTIVE MULTI-LEVEL SPLITTING METHOD FOR REACTION RATES 

AMS aims at estimating 𝑝Σ→𝑃
1,2. It can be split in 3 steps:

1. Generating initial conditions on Σ and estimate 𝑡𝑅−Σ −𝑅 =
1

𝜙𝑅

2. Initialize N replicas by running an unbiased dynamics until it reaches R or P. Set p = 1. 
Classify all the replicas by increasing ξmax. 

3. Apply the AMS loop until all replicas have reached P.

R P

Σ𝑅

R

Σ𝑅

MD for Initial conditions. 

𝜉
Reaction Coordinate (RC)𝑧𝑚𝑎𝑥

1,0

𝑧𝑚𝑎𝑥
2,0

𝑧𝑚𝑎𝑥
3,0

1 F. Cérou, A. Guyader, Stochastic Analysis and Applications 25, 417-443 (2007).
2 L. J. S. Lopes, T. Lelièvre, Journal of computational chemistry 40, 1198-1208 (2019).

2. Initialization

1. Initial conditions and flux

7
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3. AMS iterations: 𝑖 ≥ 0

a) Save the smallest (𝑧𝑚𝑎𝑥
1,𝑖 ) as 𝑧𝑘𝑖𝑙𝑙

𝑖+1 and delete all
the trajectories that did not “go above” 𝑧𝑘𝑖𝑙𝑙

𝑖+1

b) Randomly select one trajectory within the
remaining ones. Copy it until it reaches 𝑧𝑘𝑖𝑙𝑙

𝑖+1 and
continue it until it reaches R or P.

c) Classify all the replicas by increasing zmax. 

R P

Σ0

𝜉

R P

Σ0

𝜉

I. ADAPTIVE MULTI-LEVEL SPLITTING METHOD FOR REACTION RATES 

𝑧𝑚𝑎𝑥
1,0

𝑧𝑚𝑎𝑥
2,0
𝑧𝑚𝑎𝑥
3,0

𝑧𝑘𝑖𝑙𝑙
1

𝑧𝑚𝑎𝑥
3,1𝑧𝑚𝑎𝑥

1,1

𝑧𝑚𝑎𝑥
2,1

a)

b)

𝔼 ෤𝑝 = 𝑝𝑅−𝑃(Σ𝑅)

Unbiased estimator:

Var ෤𝑝 = 𝑓(𝜉)

Variance depends on RC:

3. AMS interations

෤𝑝 = ෑ

𝑖=0

𝑖𝑚𝑎𝑥

෤𝑝Σ
𝑧𝑘𝑖𝑙𝑙
𝑖 →Σ

𝑧𝑘𝑖𝑙𝑙
𝑖+1

= 1 −
1

𝑁

𝑖𝑚𝑎𝑥

8



|   ©  2 0 2 0   I F P E N

OUTLINE

I. Adaptive Multi-level Splitting (AMS) for reaction rates

II. Identifying reaction coordinate with Machine Learning (ML)

III. Results of the AMS + ML method. 

CASE STUDY: Dissociation of H2O on γ-Al2O3 (100) surface

9
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SYSTEM PRESENTATION10

Catalyst support acidity 
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II. IDENTIFYING COLLECTIVE VARIABLES WITH MACHINE LEARNING

Each structure of 𝑁 atoms is a point in ℝ3𝑁

Collective Variables(CV) are synthetic variables in 
lower dimensions. 

𝜉:ℝ3𝑁 → ℝ𝑛, 𝑛 = 1, 2, 3. . .

A reaction coordinate is one, or a set of collective 
variables able to discriminate the important 
states of the system.

An ideal reaction coordinate answers : how 
committed is the dynamic in the process of 
going from Reactants to Products ?

dist(O1-Ha)

dist(O2-Ha)

Potentially good RC:

Potentially bad RC:

dist(Al-O1)

11

2

2

H

O

Al

Reactant Product 

a

a
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II. IDENTIFYING COLLECTIVE VARIABLES WITH MACHINE LEARNING

Method: 

1. Identify the various metastable states (intermediates)
→ dissociated (Di) or associated (Ai)

2. Run short dynamics in these states to sample Potential 
Energy Surface (PES) around the minima 

3. Train supervised machine learning model 

(with the proper labelling)

Identified structures and 
intuitively plausible transitions

H

O

Al

VASP software
43 atoms
dt = 1 fs
Total time = 1 ps
3 – 4 wall clock 
hours on 1 node 
with 36 CPUs

D1 dissociated 
structure 

12
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SOAP1 atom centered descriptors to numerically encode the structure 
for training the ML algorithm.  

II. IDENTIFYING COLLECTIVE VARIABLES WITH MACHINE LEARNING

Periodic structures
(vector of 3N lines) 

Select central atom

Atom centered description of the structure
(vector of  ~ 103-104 lines)

H

O

Al

1 Bartók, A. P., Kondor, R., & Csányi, G. (2013). On representing chemical environments. Physical Review B, 87(18), 184115.

13
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II. IDENTIFYING COLLECTIVE VARIABLES WITH MACHINE LEARNING 

SVM classifiers separate two sets of points by the highest margin plane.

SOAP-SVM CV : classifier decision function (𝑓𝑋): algebraic distance to the plane. 

Identified structures and 
Intuitively plausible transitions

D1D3-vs-rest classifier

A1-vs-rest classifier

Time (fs)

D
ec

is
io

n
 f

u
n

ct
io

n
 v

al
u

es

Classifier decision function interpretation:
𝑓𝑋 𝒒 ∈ (−∞,−1] ⇔ 𝒒 ∈ 𝑋

1Sultan, M. M.; Pande, V. S. (2018) Automated design of collective variables using supervised machine learning The Journal of Chemical Physics, 149, 094106.

1

14
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OUTLINE

I. Adaptive Multi-level Splitting (AMS) for reaction rates

II. Identifying reaction coordinate with Machine Learning (ML)

III. Results of the AMS + ML method. 

CASE STUDY: Dissociation of H2O on γ-Al2O3 (100) surface

15
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III. RESULTS OF THE AMS + ML METHOD. 

With
𝑅 = 𝐴1
Σ𝑅 = Σ𝐴1
𝑃 = 𝐴2𝐴3 ∪ 𝐴4 ∪ 𝐷1𝐷3 ∪ 𝐷2𝐷4

AMS can sample :

𝐴1 → 𝐴2𝐴3
𝐴1 → 𝐴4
𝐴1 → 𝐷1𝐷3
𝐴1 → 𝐷2𝐷4

→ Answers how 𝐴1 can decompose ?

The most probable transition will be 
sampled, with precision conditioned by 𝜉

With 

𝑅 = 𝐴1 ∪ 𝐴2𝐴3 ∪ 𝐴4 ∪ 𝐷2𝐷4
Σ𝑅 = Σ𝐴1
𝑃 = 𝐷1𝐷3

AMS can sample :

𝐴1 → 𝐷1𝐷3

→ Focus specifically on one dissociation 

Quality of the sampling depends on 𝜉

16
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III. RESULTS OF THE AMS + ML METHOD. 

Multiple type of trajectories:

Final state can be identified using all CVs

Count the number of replicas 𝑛X
in finishing in the

state 𝑋

෤𝑝A1→any, ෤𝑝A2A3→any, ෤𝑝A4→any, ෤𝑝D1𝐷3→any and ෤𝑝D2D4→any

෤𝑝A1→X =
𝑛X
in

𝑁
෤𝑝A1→any

෨𝑘A1→X ≈
෤𝑝A1→X

𝑡𝑙𝑜𝑜𝑝−𝐴1

17
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Dissociation Hill hTST

𝑘𝐴1→𝐷1𝐷3 = 1.6 109 𝑠−1 3.4 1011 𝑠−1

𝑘𝐷1𝐷3→𝐴1 = 2.3 1010 𝑠−1 1.1 1012 𝑠−1

Rotation Hill hTST

𝑘𝐴1→𝐴2𝐴3 = 3.8 1010 𝑠−1 7.6 1010 𝑠−1

𝑘𝐴2𝐴3→𝐴1 = 1.5 1011 𝑠−1 2.1 1012 𝑠−1

hTST rates are larger 

Might come from entropy estimation.

III. RESULTS OF THE AMS + ML METHOD. 
18
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Identify TS structures

TS in the sense of committor function 𝑝𝑅→𝑃 (probability of reaching P before R)1

Find the level of the RC 𝑧𝑘𝑖𝑙𝑙
𝑛 such that 𝑝𝑅→𝑃 = 0.5

ෑ

𝑖=𝑛

𝑖𝑚𝑎𝑥

෤𝑝𝑅→Σ
𝑧𝑘𝑖𝑙𝑙
𝑖+1

Σ
𝑧𝑘𝑖𝑙𝑙
𝑖 = 0.5

Along each trajectory, take the structure right after the level Σ𝑧𝑘𝑖𝑙𝑙𝑛 is crossed, then find the average structure 

III. RESULTS OF THE AMS + ML METHOD. 

Example for the 𝐴1 → 𝐷1𝐷3 reaction 

Saddle point AMS estimated 
𝑝𝐴1→𝐷1𝐷3 = 0.5

1 Vanden-Eijnden, E. Transition Path Theory (2006) in Computer Simulations in Condensed Matter Systems: From Materials to Chemical 
Biology Volume 1 Springer Berlin Heidelberg: Berlin, Heidelberg p. 453-493

19



|   ©  2 0 2 0   I F P E N

Use K-means clustering method to identify groups of 
trajectories. 

Based on SOAP descriptor + PCA to describe  5 
structures per trajectory. 

5 Structures = First time trajectory cross RC iso-levels

III. RESULTS OF THE AMS + ML METHOD. 

A4

A2
A3

A1

Σ𝐴4

Reactive trajectories

Iso-levels of a reaction coordinate

20
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CONCLUSION

• Collective Variables :
✓SVM Allows to define RCs discriminating the metastable states

• AMS :
✓SOAP – SVM RCs allow to sample transitions

• Analysis of reactive trajectories:
✓Some key structures for the transition can be identified 

✓Clustering allows to differentiate types of paths

21
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PERSPECTIVES

• Application:
✓Apply this method to a more challenging reaction on alumina (such as Alcohol dehydration) 

• Theoretical aspects:
✓Auto-encoders models can be used to define RCs. 

1 Jinnouchi, R., Miwa, K., Karsai, F., Kresse, G., & Asahi, R. (2020). The Journal of Physical Chemistry Letters, 11(17), 6946-6955.
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Thank you for you attention 
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Transition time: 
1

𝑘𝑅𝑃
= 𝑡𝑅𝑃 = 𝑚𝑒𝑎𝑛 𝜏𝑖

𝑅 − 𝜏𝑖
𝑃

We model the reaction  time as:
1

𝑘𝑅𝑃
= 𝑡𝑅𝑃 =

1

𝑝Σ𝑅−𝑃
− 1 𝑡𝑅−Σ + 𝑡Σ−𝑅 + 𝑡𝑅 −Σ

† + 𝑡Σ−𝑃 ≈
𝑡𝑅→Σ→R

𝑝Σ𝑅→𝑃
=

1

𝑝Σ𝑅→𝑃 𝜙𝑅

𝑝Σ𝑅−𝑃: probability of reaching P before R when starting from Σ𝑅.

1 Baudel, M., Guyader, A., & Lelièvre, T. (2020). On the Hill relation and the mean reaction time for metastable processes. arXiv preprint, arXiv:2008.09790.

PR

I. ADAPTIVE MULTI-LEVEL SPLITTING METHOD FOR REACTION RATES 

PR

𝜏0
𝑃

𝜏1
𝑃

𝜏2
𝑅

𝜏1
𝑅

𝜏0
𝑅

Σ𝑅
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Path Collective Variable (PCV) with proper definition of states 
allows precise estimation

Summary of AMS results vs hTST results

III. RESULTS OF THE AMS + ML METHOD. 
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III. RESULTS OF THE AMS + ML METHOD. 

Write inputs files and launch VASP

Read the reaction coordinate evolution 
and identify the replica to kill

Generates the new inputs to replace 
the killed replica and launch the VASP 

calculation

All replicas are in P 
?

yes

no

Stop

Unbiased AIMD calculation for all 
replicas until it reached R or P

Unbiased AIMD calculation for all 
replicas until it reached R or P

Blue boxes: python code

Red boxes: VASP code. (modified to 
communicate with python defined RC)

AMS IMPLEMENTATION WITH VASP (PLANE WAVE DFT)

Write inputs files and launch VASP

Read the reaction coordinate evolution 
and identify the initial conditions

Write the initial condition on Σ into a 
separate directory

Time limit reached 
?

yes

no

Stop

Unbiased AIMD calculation for all 
replicas until went to Σ and back to R a 

certain number of times

Sampling of initial conditions
Probability estimation with AMS
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AMS extinction case, illustration on the Z-potential1:

AMS favors high values of the Reaction coordinate.

Bad indexation of the reaction path by the RC ξ can lead to frequent “extinction”.

→ Alternative RC needed!

x

y

𝑥𝑚𝑎𝑥

R
ep

lic
a 

n
u

m
b

e
r

P State
R State 

Initial “best” trajectory“best” trajectoryFinal “best” trajectory

Langevin dynamics with m = 1, 𝛽 = 4, Δ𝑡 = 0.1

AMS with 𝑁𝑟𝑒𝑝 = 100, 𝑘𝑚𝑖𝑛 = 1

No reactive trajectories !

෤𝑝 = 0

Algorithm “extinction”

𝜉 𝑥, 𝑦 = 𝑥

1Lechner, W.; Rogal, J.; Juraszek, J.; Ensing, B.; Bolhuis, P. G. (2010)  The Journal of Chemical Physics, 133, 174110.

I. ADAPTIVE MULTI-LEVEL SPLITTING METHOD FOR REACTION RATES 
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Alternative approach, Path Collective Variable (PCV):

A “somewhat realistic path” is needed (reverse reaction path, NEB path …)

Decent milestones definition method has to be considered (Intuition based milestones, unsupervised 
clustering) 

P state
R state
A path
Milestones along a
“somewhat realistic”
path 𝑋𝑖

PCV : 𝜉 𝑞 =
1

14

σ𝑖=0
14 𝑖𝑒−𝜆|𝑞−𝑋𝑖|²

σ𝑖=0
14 𝑒−𝜆|𝑞−𝑋𝑖|²

x

y

Langevin dynamics with m = 1, 𝛽 = 4, Δ𝑡 = 0.1

AMS with 𝑁𝑟𝑒𝑝 = 100, 𝑘𝑚𝑖𝑛 = 1

Initial condition:

* Results presented via a poster during the workshop “Méthodes machine-learning pour la modélisation des matériaux” organized by the 
GDR MODMAT from  the 22th to the 24th Sept 2021

DNS AMS 
𝜉 𝑥, 𝑦 = 𝑥

AMS 
𝜉 𝑥, 𝑦 = 𝑦

AMS 
PCV

𝐹𝑀 ෤𝑝 3.14 × 101 1.57 × 100 6.41 × 101 6.45 × 102

Figure of merit: 𝐹𝑀 ෤𝑝 =
1

𝑐 𝑉𝑎𝑟( ෤𝑝)

𝑐: computational cost per evaluation

I. ADAPTIVE MULTI-LEVEL SPLITTING METHOD FOR REACTION RATES 


