

RARE EVENT SAMPLING METHODS AND MACHINE LEARNING TO STUDY CATALYTIC REACTION MECHANISMS

THOMAS PIGEON

Pascal Raybaud¹, Manuel Corral Valero¹, Ani Anciaux-Sedrakian², Maxime Moreaud² Gabriel Stoltz³, Tony Lelièvre³

¹ IFPEN R06: Catalysis, Biocatalysis and Separation ² IFPEN R11: Digital Science and Technology ³ CERMICS, Ecole des Ponts ParisTech, and Equipe-projet MATHERIALS, Inria Paris,

² INTRODUCTION: REACTION MECHANISMS

- Transition State Theory (TST): for instance, Eyring-Polanyi equation¹ $\mathbf{k}^{hTST} = \frac{k_{\rm B}T}{h}e^{-\frac{\Delta G^{\mp}}{k_{\rm B}T}}$ Using free energy computed by static approach within harmonic approximation or Molecular Dynamics (MD)
- Alternatively: MD and Rare events simulation methods to access directly the reaction time <u>Hill relation²</u>: $k^{Hill} = p_{R \to P} \phi_R$

¹ Eyring, H. (1935). The activated complex in chemical reactions. *The Journal of Chemical Physics*, *3*(2), 107-115. ² Hill, T. (2012) Free energy transduction in biology: The steady-state kinetic and thermodynamic formalism. *Elsevier Science and Technology Books*

INTRODUCTION: STANDARD MOLECULAR DYNAMICS

NIVE oncomblo

Simulates the dynamic of the system by adding a thermostat to newton equations of motion

ex. Langevin formalism¹

3

$$\begin{cases} dq_t = M^{-1}p_t dt \\ dp_t = -\nabla V(q_t)dt - \gamma p_t dt + \sqrt{2\gamma M k_B T} dW_t \end{cases}$$

Preserves energyDissipate energyProvides energyNewton equationLangevin part

NIV/T oncomblo

Not efficient for the simulation of rare events due to high energy barriers and entropic bottlenecks

Time scales: integration time step : $\sim 10^{-15}s$ rare event rate $\sim 10^{-9}s^{-1}$ to $10^{3}s^{-1}$

MD based approaches to overcome barriers:

- TST \rightarrow biased MD such as Metadynamics², Blue-Moon sampling³...
 - Dynamics is lost but rates are estimated from free energy
- Hill → rare events sampling methods such as <u>Adaptive multi-level splitting</u>⁴ Dynamics preserved thus the rates can directly be computed

¹ Langevin P. (1908), Comptes-Rendus de l'Académie des Sciences, 146, 530-532 ² Laio, A., & Parrinello, M. (2002) Proceedings of the National Academy of Sciences, 99(20), 12562-12566. ³ Carter, E. A., Ciccotti, G., Hynes, J. T., & Kapral, R. (1989). Chemical Physics Letters, 156(5), 472-477. ⁴ Cérou, F., & Guyader, A. (2007) Stochastic Analysis and Applications, 25(2), 417-443. [©] 2020 IFPEN

I. Adaptive Multi-level Splitting (AMS) for reaction rates

II. Identifying reaction coordinate with Machine Learning (ML)

III. Results of the AMS + ML method.

CASE STUDY: Kinetics of dissociation of H_2O on γ -Al₂O₃ (100) surface

© 2020 IFPEN

Transition State Theory

Hill relation

Rate = probability of reaching P before R starting from $\partial R \times$ frequency of exits of R

 $\boldsymbol{k}^{Hill} = p_{R \to P}(\partial R) \boldsymbol{\phi}_R$

Not extremely sensitive to the definition of R and P

¹ Hänggi, P. Talkner, P. Borkovec, M. (1990) Reaction-rate theory: fifty years after Kramers *Reviews of Modern Physics*, Vol. 62, No. 2 American Physical Society (APS) p. 251-341 ² Hill, T. (2012) Free energy transduction in biology: The steady-state kinetic and thermodynamic formalism. *Elsevier Science and Technology Books*

5

What is a Multilevel Splitting estimator:

• AMS aims at estimating $p_{\Sigma \to P}^{1,2}$. It can be split in 3 steps:

- 1. Generating initial conditions on Σ and estimate $t_{R-\Sigma-R} = \frac{1}{\phi_R}$
- 2. Initialize N replicas by running an unbiased dynamics until it reaches R or P. Set p = 1. Classify all the replicas by increasing ξ_{max} .
- 3. Apply the AMS loop until all replicas have reached P.

1. Initial conditions and flux

MD for Initial conditions.

¹ F. Cérou, A. Guyader, *Stochastic Analysis and Applications* **25**, 417-443 (2007). ² L. J. S. Lopes, T. Lelièvre, *Journal of computational chemistry* **40**, 1198-1208 (2019).

3. AMS interations

3. AMS iterations: $i \ge 0$

a) Save the smallest $(z_{max}^{1,i})$ as z_{kill}^{i+1} and delete all the trajectories that did not "go above" z_{kill}^{i+1}

b) Randomly select one trajectory within the remaining ones. Copy it until it reaches z_{kill}^{i+1} and continue it until it reaches R or P.

c) Classify all the replicas by increasing z_{max} .

$$\tilde{p} = \prod_{i=0}^{i_{max}} \tilde{p}_{\Sigma_{z_{kill}^{i}} \to \Sigma_{z_{kill}^{i+1}}} = \left(1 - \frac{1}{N}\right)^{i_{max}}$$

Unbiased estimator: Variance depends on RC: $\mathbb{E}[\tilde{p}] = p_{R-P}(\Sigma_R)$ $Var[\tilde{p}] = f(\xi)$

8

I. Adaptive Multi-level Splitting (AMS) for reaction rates

II. Identifying reaction coordinate with Machine Learning (ML)

III. Results of the AMS + ML method.

CASE STUDY: Dissociation of H_2O on γ -Al₂O₃ (100) surface

© 2020 IFPEN

10 SYSTEM PRESENTATION

11 II. IDENTIFYING COLLECTIVE VARIABLES WITH MACHINE LEARNING

• Each structure of N atoms is a point in \mathbb{R}^{3N}

 Collective Variables(CV) are synthetic variables in lower dimensions.

 $\xi: \mathbb{R}^{3N} \to \mathbb{R}^n, n = 1, 2, 3...$

A reaction coordinate is one, or a set of collective variables able to discriminate the important states of the system.

An ideal reaction coordinate answers : how committed is the dynamic in the process of going from Reactants to Products ?

12 II. IDENTIFYING COLLECTIVE VARIABLES WITH MACHINE LEARNING

Method:

- 1. Identify the various metastable states (intermediates) \rightarrow dissociated (D_i) or associated (A_i)
- 2. Run short dynamics in these states to sample Potential Energy Surface (PES) around the minima

VASP software 43 atoms dt = 1 fs Total time = 1 ps 3 – 4 wall clock hours on 1 node with 36 CPUs

 Train supervised machine learning model (with the proper labelling) Identified structures and **intuitively** plausible transitions

14 II. IDENTIFYING COLLECTIVE VARIABLES WITH MACHINE LEARNING

SVM classifiers separate two sets of points by the highest margin plane.

SOAP-SVM CV : classifier decision function (f_X): algebraic distance to the plane.

Classifier decision function interpretation: $f_X(q) \in (-\infty, -1] \Leftrightarrow q \in X$

© 2020 IFPEN

- I. Adaptive Multi-level Splitting (AMS) for reaction rates
- II. Identifying reaction coordinate with Machine Learning (ML)
- **III.** Results of the AMS + ML method.
- CASE STUDY: Dissociation of H_2O on γ -Al₂O₃ (100) surface

With $R = A_1$ $\Sigma_R = \Sigma_{A_1}$ $P = A_2 A_3 \cup A_4 \cup D_1 D_3 \cup D_2 D_4$

AMS can sample :

$$A_1 \rightarrow A_2 A_3$$
$$A_1 \rightarrow A_4$$
$$A_1 \rightarrow D_1 D_3$$
$$A_1 \rightarrow D_2 D_4$$

 \rightarrow Answers how A_1 can decompose ?

The most probable transition will be sampled, with precision conditioned by ξ

$$R = A_1 \cup A_2 A_3 \cup A_4 \cup D_2 D_4$$
$$\Sigma_R = \Sigma_{A_1}$$
$$P = D_1 D_3$$

AMS can sample :

 $A_1 \rightarrow D_1 D_3$

With

ightarrow Focus specifically on one dissociation

Quality of the sampling depends on ξ

Multiple type of trajectories:

 $\tilde{p}_{A_1 \rightarrow any}$, $\tilde{p}_{A_2 A_3 \rightarrow any}$, $\tilde{p}_{A_4 \rightarrow any}$, $\tilde{p}_{D_1 D_3 \rightarrow any}$ and $\tilde{p}_{D_2 D_4 \rightarrow any}$

Final state can be identified using all CVs

Count the number of replicas $n_{\rm X}^{\rm in}$ finishing in the state X

$$\tilde{p}_{A_1 \to X} = \frac{n_X^{\text{in}}}{N} \tilde{p}_{A_1 \to \text{any}}$$

$$\tilde{k}_{\mathrm{A_1} \to \mathrm{X}} \approx \frac{\tilde{p}_{\mathrm{A_1} \to \mathrm{X}}}{t_{loop-A_1}}$$

18

III. RESULTS OF THE AMS + ML METHOD.

Dissociation	Hill	hTST
$k_{A_1 \to D_1 D_3} =$	$1.6 \ 10^9 \ s^{-1}$	$3.4 \ 10^{11} \ s^{-1}$
$k_{D_1 D_3 \to A_1} =$	$2.3 \ 10^{10} \ s^{-1}$	$1.1 \ 10^{12} \ s^{-1}$
Rotation	Hill	hTST
Rotation $k_{A_1 \rightarrow A_2 A_3} =$	Hill 3.8 10 ¹⁰ s ⁻¹	hTST 7.6 10 ¹⁰ s ⁻¹

hTST rates are larger

Might come from entropy estimation.

Identify TS structures

TS in the sense of committor function $p_{R \rightarrow P}$ (probability of reaching P before R)¹

Find the level of the RC z_{kill}^n such that $p_{R \to P} = 0.5$ $\prod_{i=n}^{i_{max}} \tilde{p}_{R \to \Sigma_{z_{kill}^{i+1}}} \left(\Sigma_{z_{kill}^i} \right) = 0.5$

Along each trajectory, take the structure right after the level $\sum_{z_{kill}} z_{kill}$ is crossed, then find the average structure

Use K-means clustering method to identify groups of trajectories.

Based on SOAP descriptor + PCA to describe 5 structures per trajectory.

5 Structures = First time trajectory cross RC iso-levels

- ----> Reactive trajectories
- Iso-levels of a reaction coordinate

21 CONCLUSION

• Collective Variables :

 \checkmark SVM Allows to define RCs discriminating the metastable states

- AMS :
 - ✓ SOAP SVM RCs allow to sample transitions
- Analysis of reactive trajectories:
 - \checkmark Some key structures for the transition can be identified
 - ✓ Clustering allows to differentiate types of paths

PERSPECTIVES

• Application:

✓ Apply this method to a more challenging reaction on alumina (such as Alcohol dehydration)

• Theoretical aspects:

✓ Auto-encoders models can be used to define RCs.

¹ Jinnouchi, R., Miwa, K., Karsai, F., Kresse, G., & Asahi, R. (2020). *The Journal of Physical Chemistry Letters*, 11(17), 6946-6955.

Thank you for you attention

 p_{Σ_R-P} : probability of reaching P before R when starting from Σ_R .

¹ Baudel, M., Guyader, A., & Lelièvre, T. (2020). On the Hill relation and the mean reaction time for metastable processes. arXiv preprint, arXiv:2008.09790.

Path Collective Variable (PCV) with proper definition of states allows precise estimation

RC	$t_{\text{loop}-R\Sigma_{A1}R}$ (fs)	$p_{\Sigma_{A_1} \to D_1 D_3}$	$k_{A_1 \to D_1 D_3}$
$R = A_1 ; P = A_2 A_3 \cup$	$A_4 \cup D_1 D_3 \cup$	D_2D_4	
A_1 -vs-all-SOAP-SVM	110 ± 5	$(1.79 \pm 1.86) \ 10^{-3}$	$(1.63 \pm 1.70) \ 10^{10}$
A_1 -vs- D_1 -SOAP-SVM	105 ± 3	$(1.81 \pm 1.98) \ 10^{-5}$	$(1.72 \pm 1.88) \ 10^8$
interpolated SOAP PCV	104 ± 4	$(1.95 \pm 2.26) \ 10^{-4}$	$(1.87 \pm 2.17) \ 10^9$
$R = A_1 \cup A_2 A_3 \cup A_4$	$\cup D_2 D_4 ; P = I$	$D_1 D_3$	
A_1 -vs- D_1 -SOAP-SVM	105 ± 2	$(3.31 \pm 2.97) \ 10^{-4}$	$(3.15 \pm 2.83) \ 10^9$
interpolated SOAP PCV	108 ± 2	$(1.78 \pm 1.73) \ 10^{-4}$	$(1.64 \pm 1, 59) \ 10^9$

Summary of AMS results vs hTST results

Transition	$k_{\mathrm{Transition}-\mathrm{AMS}}(\mathrm{s}^{-1})$	$k_{\rm Transition-hTST}({\rm s}^{-1})$	Transition	$k_{\text{Transition}-\text{AMS}}(\text{s}^{-1})$	$k_{\text{Transition}-\text{hTST}}(\text{s}^{-1})$
Water rotations			Hydroxyl rotati	on	
$A_1 \to A_2 A_3$	$(3.08 \pm 1.43) \ 10^{10}$	$7.55\ 10^{10}$	$D_1D_3 \rightarrow D_2D_4$	Ø	$2.38\ 10^9$
$A_2A_3 \to A_1$	$(1.49 \pm 0.46) \ 10^{11}$	2.06 10 ¹²	$D_2D_4 \rightarrow D_1D_3$	$(2.86 \pm 4.71) \ 10^8$	$4.15\ 10^9$
$A_2A_3 \rightarrow A_4$	$(4.33 \pm 2.20) \ 10^{10}$	$3.64\ 10^{10}$	Formation and	dissociation of water	
$A_4 \rightarrow A_2 A_3$	$(2.35 \pm 0.87) \ 10^{11}$	$5.66\ 10^{11}$	$A_1 \rightarrow D_1 D_3$	$(1.64 \pm 1, 59) \ 10^9$	$3.37 \ 10^{11}$
$A_1 \to A_4$	$(3.34 \pm 6.56) \ 10^6$	$2.04\ 10^8$	$D_1 D_3 \to A_1$	$(2.32 \pm 1.59) \ 10^{10}$	$1.13 \ 10^{12}$
$A_4 \to A_1$	$(1.34 \pm 0.68) \ 10^{10}$	$8.65\ 10^{10}$	$A_2A_3 \rightarrow D_2D_4$	$(7.86 \pm 7.53) \ 10^9$	$5.45 \ 10^{13}$
Hydroxyl rotati	on		$D_2D_4 \to A_2A_3$	$(1.28 \pm 0.54) \ 10^{11}$	$1.17 \ 10^{13}$
$D_1D_3 \rightarrow D_2D_4$	Ø	$2.38 \ 10^9$	$A_2A_3 \rightarrow D_1D_3$	Ø	Ø
$D_2D_4 \rightarrow D_1D_3$	$(2.86 \pm 4.71) \ 10^8$	$4.15\ 10^9$	$D_1 D_3 \rightarrow A_2 A_3$	$(2.33 \pm 3.14) \ 10^8$	Ø

AMS IMPLEMENTATION WITH VASP (PLANE WAVE DFT)

ĀMS extinction case, illustration on the Z-potential¹:

Langevin dynamics with $\mathrm{m}=1, \beta=4, \Delta t=0.1$

AMS with $N_{rep} = 100$, $k_{min} = 1$ $\xi(x, y) = x$

P StateR State

- Hoitistl" (tes se alloppet to yy

No reactive trajectories ! $\tilde{p} = 0$ Algorithm "extinction"

AMS favors high values of the Reaction coordinate.

Bad indexation of the reaction path by the RC ξ can lead to frequent "extinction".

\rightarrow Alternative RC needed!

¹Lechner, W.; Rogal, J.; Juraszek, J.; Ensing, B.; Bolhuis, P. G. (2010) *The Journal of Chemical Physics*, 133, 174110.

Alternative approach, Path Collective Variable (PCV):

P state R state

— A path

Milestones along a "somewhat realistic" path X_i

Langevin dynamics with m = 1,
$$\beta$$
 = 4, Δt = 0.1
AMS with N_{rep} = 100, k_{min} = 1
Initial condition:
$$\begin{cases} q = (2.01, -5.75), \\ p = (0.61, -0.15). \end{cases}$$

	DNS	$AMS \\ \xi(x, y) = x$	$AMS \\ \xi(x, y) = y$	AMS PCV
$FM(\tilde{p})$	3.14×10^{1}	1.57×10^{0}	6.41×10^{1}	6.45×10^2

Figure of merit: $FM(\tilde{p}) = \frac{1}{c Var(\tilde{p})}$ c: computational cost per evaluation

A "<u>somewhat realistic path</u>" is needed (reverse reaction path, NEB path ...)

Decent milestones definition method has to be considered (Intuition based milestones, unsupervised clustering)

* Results presented via a poster during the workshop "Méthodes machine-learning pour la modélisation des matériaux" organized by the GDR MODMAT from the 22th to the 24th Sept 2021

