COMPUTING SURFACE REACTION RATE USING MACHINE LEARNING INTER-ATOMIC POTENTIAL

THOMAS PIGEON

Transition State Theory

2

1.5

1.0

0.5

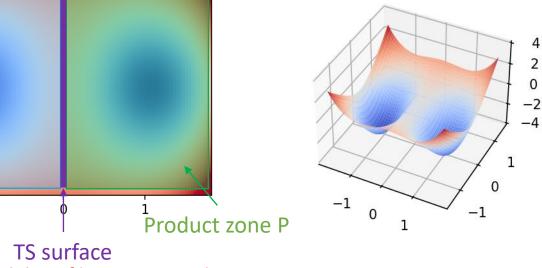
-1.0

-1.5

Reactant zone R

THE HILL RELATION

2-dimensional potential

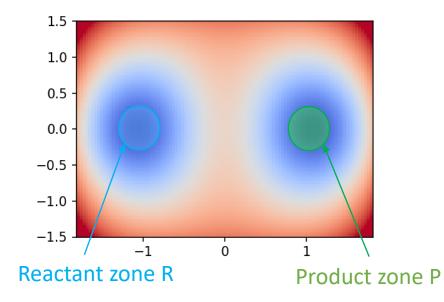


Rate = probability of being in TS with respect to R × frequency of decomposition to P

 $\boldsymbol{k}^{TST} = \mathbb{P}(TS \mid R) \, \boldsymbol{\phi}_{TS \to P}$

Sensitive to the TS definition TST overestimates rates $(\kappa)^1$

Hill relation²



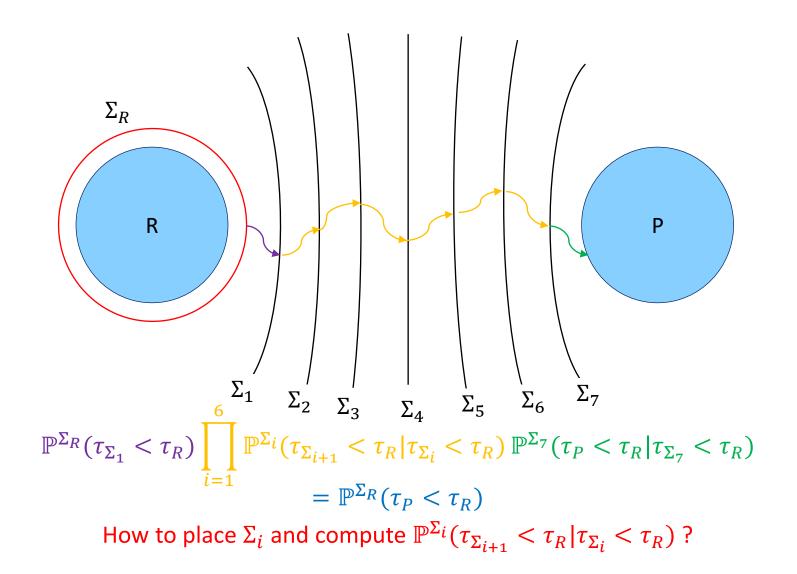
Rate = probability of reaching P before R starting from $\partial R \times$ exit frequency from R basin

 $\boldsymbol{k}^{Hill} = \mathbb{P}^{\partial R}(\tau_P < \tau_R) \boldsymbol{\phi}_R$

Not extremely sensitive to the definition of R and P

3 I. ADAPTIVE MULTI-LEVEL SPLITTING

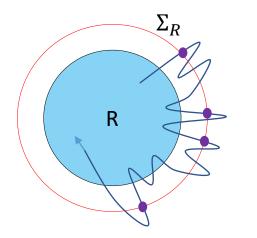
What is a Multilevel Splitting estimator?



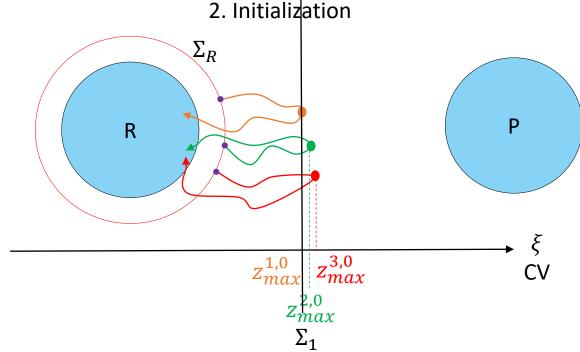
AMS can be split in 3 steps:

- 1. Generate initial conditions on Σ and estimate $t_{R-\Sigma_R-R} = \frac{1}{\phi_R}$
- 2. Initialize N_{rep} replicas by running an unbiased dynamics until it reaches R or P. Classify all the replicas by increasing z_{max}
- 3. Apply the AMS loop until all replicas have reached P

1. Initial conditions and flux



MD for Initial conditions.



¹ F. Cérou, A. Guyader, (2007) *Stochastic Analysis and Applications* 25, 417 ² L. J. S. Lopes, T. Lelièvre, (2019) *J. Comput. Chem* 40, 1198

5 I. ADAPTIVE MULTI-LEVEL SPLITTING

 Σ_0 a) R Ρ ξ $z_{max}^{3,0}$ $Z_{max}^{2,0}$ b) Σ_0 Z_{kill}^1 R Ρ ξ $z_{max}^{1,1}$ $z_{max}^{3,1}$

3. AMS iterations

3. AMS iterations: $i \ge 0$

a) Save the smallest $(z_{max}^{1,i})$ as z_{kill}^{i+1} and delete all the trajectories that did not "go above" z_{kill}^{i+1}

b) Randomly select one trajectory within the remaining ones. Copy it until it reaches z_{kill}^{i+1} and continue it until it reaches R or P.

c) Classify all the replicas by increasing z_{max}

$$\tilde{p} = \prod_{i=1}^{i_{max}-1} \mathbb{P}^{\Sigma_i}(\tau_{\Sigma_{i+1}} < \tau_R | \tau_{\Sigma_i} < \tau_R) = \left(1 - \frac{1}{N}\right)^{i_{max}}$$

Variance depends on CV: Unbiased estimator: $\mathbb{E}[\tilde{p}] = p_{R-P}(\Sigma_R) \qquad \quad \mathsf{Var}[\tilde{p}] = f(\xi)$

 \rightarrow M_{real} estimations to compute $\mathbb{E}[\tilde{p}]$ and estimate Var $[\tilde{p}]$ $\rightarrow N_{rep}$ impacts Var $[\tilde{p}]$ as well

6 II. VASP MACHINE LEARNING FORCE FIELD

VASP MLFF:1,2

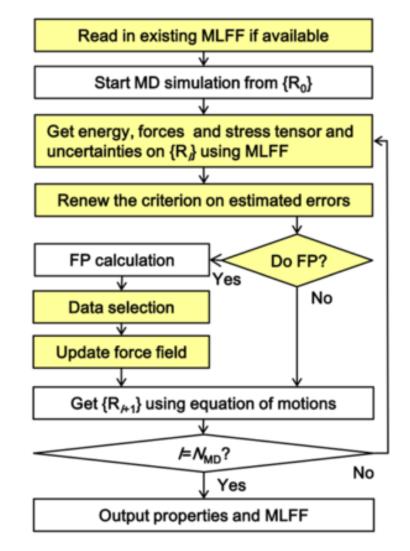
2 and 3 body (SOAP-like) atom centered descriptors

$$egin{split} &
ho_i^{(2)}\left(r
ight) = rac{1}{\sqrt{4\pi}}\sum_{n=1}^{N_{
m R}^0}c_{n00}^i\chi_{n0}\left(r
ight) \ &
ho_i^{(3)}\left(r,s, heta
ight) = \sum_{l=1}^{L_{
m max}}\sum_{n=1}^{N_{
m R}^l}\sum_{
u=1}^{N_{
m R}^l}\sqrt{rac{2l+1}{2}}p_{n
ull}^i\chi_{nl}\left(r
ight)\chi_{
ull}\left(s
ight)P_l\left(\cos heta
ight) \end{split}$$

 $\chi_{\nu l}$: spherical Bessel functions $P_l~$: Legendre polynomials

Bayesian linear regression

VASP active learning scheme:^{1,2}



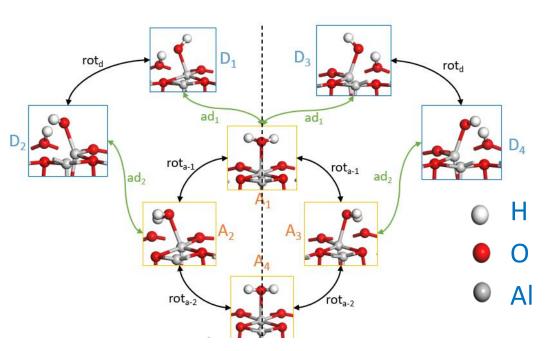
7 II. VASP MACHINE LEARNING FORCE FIELD

Method to train a MLFF:

- 1. Identify the various metastable states (intermediates) \rightarrow dissociated (D_i) or associated (A_i)
- 2. Run active learning dynamics in these states to sample Potential Energy Surface (PES) around the minima



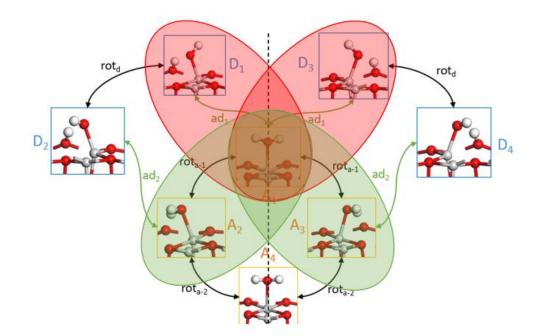
- 3. Concatenate the dataset (containing E, Forces, and positions)
- 4. AMS with Active learning
- 5. Re-fit the force field
 - \rightarrow Rate can be estimated with AMS with MLFF without active learning



Identified structures and **intuitively** plausible transitions

8 II. VASP MACHINE LEARNING FORCE FIELD

 $A_1 \rightarrow D_1 D_3$ Dissociation



With
$$N_{rep} = 200$$
 and $M_{real} = 10$
DFT
 $k_{A_1 \to D_1 D_3} = (1.64 \pm 1.59) \ 10^9 \ s^{-1}$
MLFF
 $k_{A_1 \to D_1 D_3} = (2.76 \pm 3.81) \ 10^9 \ s^{-1}$

with N_{rep} = 800 and M_{real} = 10 $k_{A_1 \rightarrow D_1 D_3} = (2.43 \pm 1.15) \ 10^9 \ s^{-1}$

> Test MAE forces =76 meV/Å Test MAE energy = 20 meV 1000 configurations randomly drawn from sampled reactive trajectories

AMS on $\rm H_2O$ / (100) $\gamma\text{-}\rm Al_2O_3$

- AMS was implemented with AIMD, using basic ML tools allows to identify the necessary function to estimate rates and sample paths
- MLFF-MD and DFT-MD AMS rates are consistent
- MLFF used in prediction mode drastically reduces the computational cost
- Current implementation of AMS with VASP limits the application of active learning
 - \rightarrow Restart does have an important cost for the active learning

