COMPUTING SURFACE REACTION RATE USING MACHINE LEARNING INTER-ATOMIC POTENTIAL

THOMAS PIGEON

 1.5 1.0

Transition State Theory

 $\boldsymbol{k}^{TST} = \mathbb{P}(TS \mid R) \ \phi_{TS \rightarrow P}$

Sensitive to the TS definition TST overestimates rates $(\kappa)^1$

Hill relation²

Rate = probability of reaching P before R starting from $\partial R \times$ exit frequency from R basin

 $\textbf{\textit{k}}^{Hill} = \ \mathbb{P}^{\partial R}(\tau_P < \tau_R) \ \phi_R$

Not extremely sensitive to the definition of R and P

 0.5

 0.0

 -0.5

 -1.0

 -1.5

3 | I. ADAPTIVE MULTI-LEVEL SPLITTING

What is a Multilevel Splitting estimator?

AMS can be split in 3 steps:

- 1. Generate initial conditions on Σ and estimate $t_{R-\Sigma_R-R} = \frac{1}{\phi_1}$ $\boldsymbol{\phi_R}$
- 2. Initialize N_{rep} replicas by running an unbiased dynamics until it reaches R or P. Classify all the replicas by increasing Z_{max}
- 3. Apply the AMS loop until all replicas have reached P

1. Initial conditions and flux

MD for Initial conditions.

| © 2 0 2 0 I F P E N ² L. J. S. Lopes, T. Lelièvre, (2019) *J. Comput. Chem* 40, 1198 ¹ F. Cérou, A. Guyader, (2007) *Stochastic Analysis and Applications* 25, 417

I. ADAPTIVE MULTI-LEVEL SPLITTING

3. AMS iterations

3. AMS iterations: $i \geq 0$

a) Save the smallest $(z_{max}^{1,i})$ as z_{kill}^{i+1} and delete all the trajectories that did not "go above" z_{kill}^{i+1}

b) Randomly select one trajectory within the remaining ones. Copy it until it reaches z_{kill}^{i+1} and continue it until it reaches R or P.

c) Classify all the replicas by increasing z_{max}

$$
\tilde{p} = \prod_{i=1}^{i_{max}-1} \mathbb{P}^{\Sigma_i}(\tau_{\Sigma_{i+1}} < \tau_R | \tau_{\Sigma_i} < \tau_R) = \left(1 - \frac{1}{N}\right)^{i_{max}}
$$

 $\mathbb{E}[\tilde{p}] = p_{R-P}(\Sigma_R)$ $\text{Var}[\tilde{p}] = f(\xi)$ Unbiased estimator: Variance depends on CV:

 \rightarrow M_{real} estimations to compute $\mathbb{E}[\tilde{p}]$ and estimate Var $[\tilde{p}]$ \rightarrow N_{rep} impacts Var $[\tilde{p}]$ as well

6 III. VASP MACHINE LEARNING FORCE FIELD

VASP MLFF:^{1,2}

2 and 3 body (SOAP-like) atom centered descriptors

$$
\rho_i^{\left(2\right)} \left(r \right) = \frac{1}{\sqrt{4\pi}} \sum_{n = 1}^{N_{\text{R}}^0} c_{n00}^i \chi_{n0} \left(r \right) \\ \rho_i^{\left(3\right)} \left(r, s, \theta \right) = \sum_{l = 1}^{L_{\text{max}}} \sum_{n = 1}^{N_{\text{R}}^l} \sum_{\nu = 1}^{N_{\text{R}}^l} \sqrt{\frac{2l + 1}{2}} p_{n \nu l}^i \chi_{n l} \left(r \right) \chi_{\nu l} \left(s \right) P_l \left(\cos \theta \right)
$$

 $\chi_{\nu l}$: spherical Bessel functions P_l : Legendre polynomials

Bayesian linear regression

VASP active learning scheme:^{1,2}

II. VASP MACHINE LEARNING FORCE FIELD

Method to train a MLFF:

- 1. Identify the various metastable states (intermediates) \rightarrow dissociated (D_i) or associated (A_i)
- 2. Run active learning dynamics in these states to sample Potential Energy Surface (PES) around the minima

- 3. Concatenate the dataset (containing E, Forces, and positions)
- 4. AMS with Active learning
- 5. Re-fit the force field
	- \rightarrow Rate can be estimated with AMS with MLFF without active learning

Identified structures and **intuitively** plausible transitions

8 | II. VASP MACHINE LEARNING FORCE FIELD

 $A_1 \rightarrow D_1 D_3$ Dissociation

with N_{rep} = 200 and M_{real} = 10 DFT $k_{A_1\to D_1D_3} =$ $=$ (1.64 \pm 1.59) 10⁹ s⁻¹ MLFF $k_{A_1\to D_1D_3} =$ $=$ $(2.76 \pm 3.81)10^9 s^{-1}$

with N_{rep} = 800 and M_{real} = 10 $k_{A_1 \to D_1 D_3}$ = (2.43 \pm 1.15) 10⁹ s⁻¹

> Test MAE forces =76 meV/Å Test MAE energy = 20 meV 1000 configurations randomly drawn from sampled reactive trajectories

AMS on H₂O / (100) γ -Al₂O₃

- AMS was implemented with AIMD, using basic ML tools allows to identify the necessary function to estimate rates and sample paths
- MLFF-MD and DFT-MD AMS rates are consistent
- MLFF used in prediction mode drastically reduces the computational cost
- Current implementation of AMS with VASP limits the application of active learning
	- \rightarrow Restart does have an important cost for the active learning

