COMPUTING SURFACE REACTION RATE USING MACHINE
LEARNING INTER-ATOMIC POTENTIAL
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2 | THE HILL RELATION

Transition State Theory Hill relation?

2-dimensional potential L5
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TS surface
Rate = probability of being in TS with respect to R

Rate = probability of reaching P before R starting
X frequency of decomposition to P

from OR X exit frequency from R basin

E™T =P(TS|R) ¢rsp kH = POR(7p < 13) ¢
Sensitive to the TS definition Not extremely sensitive to the
TST overestimates rates (x)?! definition of R and P

1 Hanggi, P. Talkner, P. Borkovec, M. (1990) Reviews of Modern Physics , 62, 2, 251
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2 Hill, T. (2012) Free energy transduction in biology: The steady-state kinetic and thermodynamic formalism. Elsevier @n:fzfg';g
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3 I |. ADAPTIVE MULTI-LEVEL SPLITTING

What is a Multilevel Splitting estimator?

)
L%y, oy, % % 7
PR (15, < Tg) P>7 (tp < Tglty, < Tg)

= P*R(Tp < Tg)

How to place X; and compute [P’Ei(rzl.+1 < Tp|Tg; < TR)? Qfﬁf&’ﬂgﬁi
nr



4 B 1. ADAPTIVE MULTI-LEVEL SPLITTING

AMS can be split in 3 steps:
1

1. Generate initial conditions on X and estimate tg_5, g = o
R

2. Initialize N, replicas by running an unbiased dynamics until it reaches R or P.
Classify all the replicas by increasing z,, .,

3. Apply the AMS loop until all replicas have reached P
2. Initialization

1. Initial conditions and flux

1,0 | .30
Zmax ' Zmax CV

MD for Initial conditions. N

p . . . ( 'fP Energies
L F. Cérou, A. Guyader, (2007) Stochastic Analysis and Applications 25, 417 Kl\_/_nouvelles
2L.J.S. Lopes, T. Lelievre, (2019) J. Comput. Chem 40, 1198



5 § I. ADAPTIVE MULTI-LEVEL SPLITTING

3. AMS iterations : : :

3. AMS iterations: i = 0

a) Save the smallest (Z%,iiax) as z[41 and delete all
the trajectories that did not “go above” zpi;T

b) Randomly select one trajectory within the
remaining ones. Copy it until it reaches z;};; and

continue it until it reaches R or P.

Zl,O . 23,0 - f
b) maZx2;0 max c) Classify all the replicas by increasing z,,,,,
max
Imax—1 Imax
i=1
Unbiased estimator: Variance depends on CV:
E[p] = pr-p(Zr) Var[p] = f($)
21’1: i o > < > M, estimations to compute E[f§] and estimate Var[p]
maJ;’-l Zmax - N, impacts Var[p] as well (-fPEnepgfes
Zmax Q_/_nouvellss



6

Il. VASP MACHINE LEARNING FORCE FIELD

VASP MLFF:12

2 and 3 body (SOAP-like) atom centered descriptors

L

(2) /oy _

P; "")— cn Xno )

( Var = r
L N* Nk
e 2a+1

o (r5,0) = 3503 Pl Xt (1) Xu1 (5) P (cosf)
=1 n=1 v=1

X1 : spherical Bessel functions
P, : Legendre polynomials

Bayesian linear regression

1 Jinnouchi, R.; Karsai, F.; Kresse, G. (2019) Phys. Rev. B 100, 014105
2 Jinnouchi, R.; Miwa, K.; Karsai, F.; Kresse, G.; Asahi, R. (2020) J Phys. Chem. Lett. 11, 6946

VASP active learning scheme:*2

Read in existing MLFF if available

¥

Start MD simulation from {Ry}

¥

Get energy, forces and stress tensor and
uncertainties on {R } using MLFF

¥

Renew the criterion on estimated errors

FP calculation Do FP?

¥ Yes

Data selection No

W

Update force field

v :

Get {R .} using equation of motions

(v]
Yes

Output properties and MLFF

( fP Energies
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7 I Il. VASP MACHINE LEARNING FORCE FIELD

Method to train a MLFF:

1.

2.

Identify the various metastable states (intermediates)
—> dissociated (D,) or associated (A)

Run active learning dynamics in these states to sample
Potential Energy Surface (PES) around the minima

D, dissociated
structure

dt=1fs
Total time =50 ps

Concatenate the dataset (containing E, Forces, and
positions) |dentified structures and
AMS with Active learning intuitively plausible transitions

Re-fit the force field
—> Rate can be estimated with AMS with MLFF without active learning
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3 I Il. VASP MACHINE LEARNING FORCE FIELD

real —

with N, =200and M, = 10

A; - D;D; Dissociation DFT
Ka,>D,Dy = (1.64 + 1.59) 10° s 1
MLFF
Ka,»p,ps = (2.76 + 3.81)10° s~
with N ., =800 and M, = 10
Ka,-piD; = (2.43 +1.15) 109 s~1

Test MAE forces =76 meV/A
Test MAE energy = 20 meV
1000 configurations randomly drawn
from sampled reactive trajectories
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9 I CONCLUSIONS

AMS on H,0 / (100) y-AlL0,

 AMS was implemented with AIMD, using basic ML tools allows to identify the necessary function to
estimate rates and sample paths

MLFF-MD and DFT-MD AMS rates are consistent

MLFF used in prediction mode drastically reduces the computational cost

Current implementation of AMS with VASP limits the application of active learning
—>Restart does have an important cost for the active learning
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