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Motivations

To design efficient catalysts or understand the activity of proteins in biology, the
knowledge of the various possible transformation and their rate is desired.

Numerical simulation can lead to these results which are not accessible from an
experimental approach.
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Classical system of N atoms is described by:

o Positions: q € Q where Q = R3V or (TT3)N

o Momenta: p € R3V

o Hamiltonian: H(q,p) = p"M~'p + V(q)
V include the atom-atom interaction and the electron cloud - atom interaction.
For chemical reaction, computationally expensive method must be used to

evaluate V.
Positions and momenta are distributed according to Boltzmann—Gibbs measure:

1
p(da, dp) = 56‘5”“"")dqdp, (1)
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Evolution in time of the system modelled by Langevin dynamics (friction v > 0)

dq, = M~ 'p.dt
2 2)
dp, = —VV(q,)dt — yp,dt + \/El\/ﬁdwt.

The description of the transformations in the system are reduced to answering:

o What are the main modes (metastable states A; C Q) of Boltzmann—Gibbs
measure (1) ?

o How much time does it take for (2) to go from one to another ?
o What is (are) the path(s) taken during these transitions ?
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Hill relation

Assuming two metastable states A and B

are identified:
The reaction rate is:

kA—>B = q)AﬂDaA(TA < TB) (3)
with:
10 mx = inf {t € (0;+00) | q, € X}

/ -1 0 1
Reactant zone A Product zone B

o &, is the frequency of exits of A (easy to compute)

o P9A(14 < 78) is the probability of reaching B before A starting on DA
(difficult to compute)

The Hill relation! is exact for the overdamped Langevin and Langevin dynamics®:3

IHill, Free Energy Transduction in Biology, Elsevier Science and Technology Books, 2012
2Baudel, Guyader, Leliévre, arXiv:2008.09790 2020
3Lelievre, Ramil, Reygner, arXiv:2206.13264 2022
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Splitting estimator

A surface X4 is placed to capture "actual exits" of A such that;
[PaA(TA < TB) ~ [PZA(TA < TB).

Xz
%oz oy, I Ze 7

6
P> (14 < 18) = P (74 < 7%,) (H P> (74 < 7'):,.+1)> P> (7a < ToB)
i=1
How to place &; 7
How to compute P¥ (74 < 7%,,,) ?
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Adaptive multilevel splitting (AMS)

AMS is a multiple replicas approach designed to place ¥; automatically so that
P*(7a < 7x,.,) is constant (minimize estimator variance).

1. Initial conditions for replicas are sampled on ¥ 4 by running MD (discretized
Langevin equation).*

4Cérou, Guyader, Stoch. Anal. Appl. 2007, 25, 417443
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Adaptive multilevel splitting (AMS)

2. Run N, replicas until A or B is reached.

0
Zmax Reaction Coordinate (RC)

Classify the replicas using a 1D reaction coordinate (RC) £ : Q — R.

Defining X1 = {q € Q|¢(q) = z%2, }, we have:

max

~ Nrep—1
Pa-x,(Xa) = “RE—
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Adaptive multilevel splitting (AMS)

a)

3. Save the level z10 =zl

max
Delete the 15 replica, and
T ¢ replace it by branching randomly
b) o any of the remaining one.

1
Zieiut

Repeat step 3. until all replicas
finish in B.

3
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This algorithm is unbiased® but the variance depends on ¢.

The optimal £ is the committor function ps_, g defined in any points q € Q as the
probability of reaching B before A when running the dynamics (2) starting from q.

How this function can be learned ?

Is it possible to learn it "on the fly" ?

5Brehier, Gazeau, Goudenége, Leliévre, Rousset, J. Appl. Probab. 2016, 26, 3559 3601.
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We consider the overdamped Langevin dynamics (y — +00)

2
dq, = -VV(q,)dt + \/;th

with infinitesimal generator:

£:—VV-V+%A

pa-s(a) =P (a,, , € Blay = q)

Committor function verifies the Backward Kolmogorov equation:

Vq e Q\(AUB), Lpas(q)=0,
Vq € Za PA—>B(Q) =0, vq € §7 pA—>B(q) =1,

with A= AUOA and B=AUOB
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1% method, point-wise approximation
o Multiple MD runs starting from various positions q
o Define bins using a set of collective variables and use "infinitely" long
unbiased MD trajectory® or multiple weighted trajectories’

— Drawback: CVs parameterizing the committor should be known

20d method, variational formulation8:9-10

arginf / IVF(q) e ?V@dq, |f(q) =0,qc A, f(q)=1,q¢cB.
f Q\(AUB)

— Drawback: a sampling of the Boltzmann—Gibbs measure is required.

SFrassek, Arjun, Bolhuis, J. Chem. Phys. 2021, 155, 064103.
“Lopes, Lelievre, J. Comput. Chem. 2019, 40, 11981208
8Khoo, Lu, Ying, arXiv:1802.10275 2018

9Li, Lin, Ren, J. Chem. Phys. 2019, 151, 054112.
10Rotskoff, Vanden-Eijnden, arXiv:2008.06334, 2020
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34 method: fixed point with multiple evaluations!?

f

. i 2
arglnf{ / (- P f(a) - (P15) (a)) u(dq)}.
Q\(AUB)
where 11 can be any measure defined on Q\(AU B) and P is the propagator:

(Ppa—g) (ap) =E% [PA—>B (qt/\‘rf —)

AUB
=E% {pA%B (a:) ﬂKTZuE} +E® []IE (quug) ﬂt?TZuE}
= (PiPA—>B) (QO) + (Pb]lﬁ) (QO)
The committor verifies:

va € Q\(AUB), (I—7P')pass(a)— (P"15)(a) =0.

— Drawback: Multiple runs have to be started from the same point.

11Strahan, Finkel, Dinner, Weare, J. Comput. Phys. 2023, 488, 112152.
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Methods to learn the committor with neural networks

4*h method: fixed point with an ergodic trajectory?:13

1 .
arginf{— / f(a) (I —P") f(a)e "V @dq
2 Jo\(auB)

f
- / f(a)P*15(a)e*VWdq
O\ (AUB)

— Drawback: an ergodic trajectory sampling the Boltzmann—Gibbs measure is
required.

12| i Khoo, Ren, Ying, In Proceedings of the 2nd Mathematical and Scientific Machine Learning
Conference, Vol. 145, 2022.
13He, Chipot, Roux, J. Phys. Chem. Lett. 2022, 13, 92639271.
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Ito formula leads to:

2
dpa—s(a;) = Lpa—s(q,)dt + \/;VPAas(qt) - dW:.

Then, Yq, € Q\(AU B):

pAﬂB(qt)1t<‘r;u§+]l§(qr;u§)]]- >, E_pA%B q) / \/ VPAHB q,)-dW,

Alternative approach:

arginf [ [El< (@) Le<ry 5 + 150, )ler, 5 — flao)
Q\(AUB)

L oo o
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Using the Euler-Maruyama integration scheme:

[2At
Adpr1 =94, — vv(Qn)At + 7Gn+17

we run K trajectories of length N. Then the discretized loss writes:

K NA| AE | +1 A 2
t
59:?; @(QZALTZA%EJH)_'(G(QS)_ ; \/7V'€9(Q5)'G5 )

where fy is the neural network parameterizing the committor:

fo(a) = (1 - 13(a)) [(1 - 15(a)) po(a) + 15(a)] -
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[llustration of the method

On the entropic switch potential.#

25 3

N
=}
N

-

y

=)

o
Potential energy

x o

Using a feedforward model
3 hidden layers of 20 neurons with tanh activation function
Optimizer: Adam, learning rate .001

14Park, Sener, Lu, Schulten, J. Chem. Phys. 2003, 119, 1313-1319.
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[llustration of the method

1. Define:
A and B: Discs centered on minima.
> 4 and Xg: Circles centered on minima

2. Run short MD starting from minima
to gather initial conditions for AMS
(Nrep = 20).

Thomas Pigeon (IFPEN, INRIA Paris)

3. Minimize the loss Ly with trajectories

of length N =1

loglcommittor) iso-levels

25
20
15
10
0s
0.0
=0.5
=1.0

MCM 2023, Paris

[T



[llustration of the method

4. Run AMS forward (A — B) and
backward (B — A) and gather all the 5. Re-train the model.
sub-trajectories of length N =1

log{committor) iso-levels

= Minimum energy path

25

20

15
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[llustration of the method

6. Gather new initial conditions.
7. Run AMS again (N, = 50).

8. Add the new trajectories Steps 6. to 9. are repeated (at a fixed
(possibly increase the length of N) until the training of the model is no
trajectories) longer influenced by the dataset.

9. Retrain the model.
Multiple training should be done

00 (sensible to the initial weights and
oo biases)

log(committor) iso-levels

—— Minimum energy path

Convergence measured by linear

05 . .
| 40 regression between approximate

00 . . .

o F-48 committor values from one iteration to

o 56 the other.

- F-6.4
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10 AMS runs with 100 replicas at 5 = 2

Reaction coordinate ‘ E&(x,y)=x ‘ NN committor ‘ FE committor
Forward [ [ [

estimated standard deviation | 9.55 10~* [ 7.43 107 227103
Mean estimated probability | 6.38 107* | 3.96 1073 3.7110°3
Backward [ [ [

estimated standard deviation | 1.18 10~° 1.421073 7.3910°%
Mean estimated probability | 1.46 1073 | 4.47 103 3.80 1073
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This method allows to define satisfying reaction coordinate for AMS (in the sense
of AMS variance)

Compare this method to other methods to learn committor in the litterature.

Thank you!
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arginf { / VF(q)[2 e ?V@dq,

f(a)=0,q €A, f(q)=1,q€B.}

f(a) = p*(a) + An(q) where p* is a critical point of the minimized functional.

_19
20X Ja\(auB)

= [ V@) Ve'(@)e @ dg
Q\(AUB)

|Vf,\(q)|2 e V() gq

A=0

[ 9 (@ (@) V) da
Q\(AUB)

- / w(@)V - (Vp*(a)e V@) da.
Q\(RUP)
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Since for all functions 7 such that Vq € (9RU9P),n(q) =0

/ V- (n(q)Vp*(q)e‘W(“)) dq :/ n(a)Vp*(q)e V@ ds =0,
Q\(AUB)

8(Q\(AUB))

We have
0= /Q @V (TP @) o
0= /Q n(a) (Ap*(a— BVp*(a) - V V(@) e *V @D dg

0= / (@B (Lovap’) (@)e V@ dq,
Q\ (AU

MCM 2023, Paris
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Fixed point justification

VQO € Q\(Z U §)7

t/\TZUE 2
pA—)B(qt)]1t<TZUE+]l§(qTZUE)1t>TZU§_pA—>B(q0) = / \/ EVPAaB(qs)'dWs
0
Taking the expectation with respect to the law of the process we get:

va € Q\(AUB). (P — Npase(a) + P*15(a) = 0.
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. 1 ; _ B )
arg1nf{2/ ~f(a) (1 =P") f(q)e AV gq _/ o f(q)Pbllg(q)e V(@) dq
f Q2\(AUB) Q\(AUB) J

1 )
0=2 7/ A1) (1 — ') (g, e V@ dq
OA\ 2 Jo\(auB)

B / i(a, A)P"ﬂs(q)e—ﬁ”q)dq)
Q\(AUB)

A=0

:/ _ (@) (1 =P7) p*(a)e™?Wdq —/ n(a)P*1z(a)e "V Wdq
Q\(AUB) Q\(RUP)

:/ () [(1=P") p*(a) — PP1g(q)] e 7V D dq.
Q\(AUB)
The second equality holds as P’ is self adjoint on Li(Q\(ZUE))“’

151i, Khoo, Ren, Ying, In Proceedings of the 2nd Mathematical and Scientific Machine Learning
Conference, Vol. 145, 2022
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